Skip to main content

Measuring Transendothelial Electrical Resistance (TEER) for Dengue Infection Studies

  • Protocol
  • First Online:
Dengue Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2409))

Abstract

A growing body of evidence demonstrates that endothelial cells (ECs) play a prominent role in immune-enhanced pathology seen in dengue virus (DENV) infection that might contribute to vascular permeability and hemorrhagic manifestations in severe dengue cases. However, it remains a question of whether DENV infection of ECs directly causes permeability or if extra-endothelial factors such as immune cell activation or antibody-dependent enhancement (ADE) are required. In this chapter, we detail the measurement of the transendothelial electrical resistance (TEER), a quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial monolayers and show that DENV infection of ECs does not cause endothelial permeability in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aird WC (2004) Endothelium as an organ system. Crit Care Med 32(5 Suppl):S271–S279. https://doi.org/10.1097/01.ccm.0000129669.21649.40

    Article  PubMed  Google Scholar 

  2. Cines DB, Pollak ES, Buck CA et al (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91(10):3527–3561

    CAS  PubMed  Google Scholar 

  3. Dvorak HF (2010) Vascular permeability to plasma, plasma proteins, and cells: an update. Curr Opin Hematol 17(3):225–229. https://doi.org/10.1097/MOH.0b013e3283386638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valbuena G, Walker DH (2006) The endothelium as a target for infections. Annu Rev Pathol 1:171–198. https://doi.org/10.1146/annurev.pathol.1.110304.100031

    Article  CAS  PubMed  Google Scholar 

  5. Basu A, Chaturvedi UC (2008) Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 53(3):287–299. https://doi.org/10.1111/j.1574-695X.2008.00420.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Halstead SB (2007) Dengue. Lancet 370(9599):1644–1652. https://doi.org/10.1016/S0140-6736(07)61687-0

    Article  PubMed  Google Scholar 

  7. Pierson TC, Diamond MS (2020) The continued threat of emerging flaviviruses. Nat Microbiol 5(6):796–812. https://doi.org/10.1038/s41564-020-0714-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rey FA, Stiasny K, Vaney MC et al (2018) The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 19(2):206–224. https://doi.org/10.15252/embr.201745302

    Article  CAS  PubMed  Google Scholar 

  9. Katzelnick LC, Gresh L, Halloran ME et al (2017) Antibody-dependent enhancement of severe dengue disease in humans. Science 358(6365):929–932. https://doi.org/10.1126/science.aan6836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beatty PR, Puerta-Guardo H, Killingbeck SS et al (2015) Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 7(304):304ra141. https://doi.org/10.1126/scitranslmed.aaa3787

    Article  CAS  PubMed  Google Scholar 

  11. Puerta-Guardo H, Glasner DR, Harris E (2016) Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog 12(7):e1005738. https://doi.org/10.1371/journal.ppat.1005738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balsitis SJ, Coloma J, Castro G et al (2009) Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am J Trop Med Hyg 80(3):416–424

    Article  Google Scholar 

  13. Balsitis SJ, Williams KL, Lachica R et al (2010) Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 6(2):e1000790. https://doi.org/10.1371/journal.ppat.1000790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jessie K, Fong MY, Devi S et al (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189(8):1411–1418. https://doi.org/10.1086/383043

    Article  PubMed  Google Scholar 

  15. Dalrymple N, Mackow ER (2011) Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol 85(18):9478–9485. https://doi.org/10.1128/JVI.05008-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dalrymple NA, Mackow ER (2012) Roles for endothelial cells in dengue virus infection. Adv Virol 2012:840654. https://doi.org/10.1155/2012/840654

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dalrymple NA, Mackow ER (2012) Endothelial cells elicit immune-enhancing responses to dengue virus infection. J Virol 86(12):6408–6415. https://doi.org/10.1128/JVI.00213-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srinivasan B, Kolli AR, Esch MB et al (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20(2):107–126. https://doi.org/10.1177/2211068214561025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernas MJ, Cardoso FL, Daley SK et al (2010) Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protoc 5(7):1265–1272. https://doi.org/10.1038/nprot.2010.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mladinich MC, Schwedes J, Mackow ER (2017) Zika virus persistently infects and is basolaterally released from primary human brain microvascular endothelial cells. MBio 8(4):e00952. https://doi.org/10.1128/mBio.00952-17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich R. Mackow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conde, J.N., Mladinich, M., Schutt, W., Mackow, E.R. (2022). Measuring Transendothelial Electrical Resistance (TEER) for Dengue Infection Studies. In: Mohana-Borges, R. (eds) Dengue Virus. Methods in Molecular Biology, vol 2409. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1879-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1879-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1878-3

  • Online ISBN: 978-1-0716-1879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics