Skip to main content

Fluorescence Lifetime Imaging Probes for Cell-Based Measurements of Enzyme Activity

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2394))

Abstract

Posttranslational modification (PTM) enzymes are important modulators of protein structure and function. They typically act by chemically modifying amino acids, often on side chain functional groups, to change the physiochemical landscape of the protein and thus its biophysical behavior. In particular, protein kinases are enzymes that transfer phosphate from ATP to serine, threonine, or tyrosine in protein substrates. They are key regulators of vital cellular pathways such as survival, proliferation, and apoptosis, and their dysregulation in the context of cancer has been widely investigated for the purpose of development of anticancer drugs. However, several critical questions pertaining to their physiology, such as heterogeneity of kinase signaling within and between cells, and other factors that may play into the mechanisms of drug resistance, remain unanswered. Many of the current strategies to measure kinase activity lack the scope, subcellular resolution, and real-time monitoring ability needed to obtain the type of information needed about their dynamics and localization in cells. While FRET-based biosensors are capable of dynamic single cell imaging, their applications can be limited by difficulties in multiplexing and the inherent inadequacies of steady state measurements. In this chapter, we describe our fluorescence lifetime imaging microscopy (FLIM) probe technology in which peptide kinase substrates, linked to cell-penetrating peptides and labeled with small molecule fluorophores, are used to report kinase activity through time-resolved fluorescence imaging to visualize and quantify changes to the probe’s fluorescence lifetime. These can be multiplexed for more than one kinase at a time, and interpretation is not affected by differences in local intensity due to probe uptake and distribution or photobleaching. With careful choice of peptide substrate(s), fluorophore label, and imaging set-up, high specificity and spatiotemporal resolution can be achieved. Due to the mechanism by which the lifetime change occurs, this approach is compatible with other PTMs (such as acetylation, methylation), and so the considerations for kinase FLIM probe design described in this chapter should be broadly applicable for other PTMs as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartram CR, Kleihauer E, de Klein A, Grosveld G, Teyssier JR, Heisterkamp N, Groffen J (1985) C-abl and bcr are rearranged in a Ph1-negative CML patient. EMBO J 4(3):683–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hernández SE, Krishnaswami M, Miller AL, Koleske AJ (2004) How do Abl family kinases regulate cell shape and movement? Trends Cell Biol 14(1):36–44

    Article  CAS  PubMed  Google Scholar 

  3. Roskoski R Jr (2019) Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol Res 152:104609. https://doi.org/10.1016/j.phrs.2019.104609

    Article  CAS  PubMed  Google Scholar 

  4. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP (2015) Targeting cancer with kinase inhibitors. J Clin Invest 125(5):1780–1789. https://doi.org/10.1172/JCI76094

    Article  PubMed  PubMed Central  Google Scholar 

  5. Levitzki A, Klein S (2019) My journey from tyrosine phosphorylation inhibitors to targeted immune therapy as strategies to combat cancer. Proc Natl Acad Sci U S A 116(24):11579–11586. https://doi.org/10.1073/pnas.1816012116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klein S, Levitzki A (2007) Targeted cancer therapy: promise and reality. Adv Cancer Res 97:295–319. https://doi.org/10.1016/S0065-230X(06)97013-4

    Article  CAS  PubMed  Google Scholar 

  7. Kruk M, Widstrom N, Jena S, Wolter NL, Blankenhorn JF, Abdalla I, Yang T-Y, Parker LL (2019) Assays for tyrosine phosphorylation in human cells. Methods Enzymol 626:375–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen C, Turk BE Analysis of serine-threonine kinase specificity using arrayed positional scanning peptide libraries. Curr Protoc Mol Biol. Chapter 18:Unit 18 4

    Google Scholar 

  9. Miller ML, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, Olhovsky M, Pasculescu A, Alexander J, Knapp S, Blom N, Bork P, Li S, Cesareni G, Pawson T, Turk BE, Yaffe MB, Brunak S, Linding R (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2. https://doi.org/10.1126/scisignal.1159433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deng Y, Alicea-Velazquez NL, Bannwarth L, Lehtonen SI, Boggon TJ, Cheng HC, Hytonen VP, Turk BE (2014) Global analysis of human nonreceptor tyrosine kinase specificity using high-density Peptide microarrays. J Proteome Res 13(10):4339–4346. https://doi.org/10.1021/pr500503q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, Cantley LC (1994) Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol 4(11):973–982

    Article  CAS  PubMed  Google Scholar 

  12. Kettenbach AN, Wang T, Faherty BK, Madden DR, Knapp S, Bailey-Kellogg C, Gerber SA (2012) Rapid determination of multiple linear kinase substrate motifs by mass spectrometry. Chem Biol 19(5):608–618. https://doi.org/10.1016/j.chembiol.2012.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perez M, Blankenhorn J, Murray KJ, Parker LL (2019) High-throughput Identification of FLT3 wild-type and mutant kinase substrate preferences and application to design of sensitive in vitro kinase assay substrates. Mol Cell Proteomics 18(3):477–489. https://doi.org/10.1074/mcp.RA118.001111

    Article  CAS  PubMed  Google Scholar 

  14. Ross BL, Tenner B, Markwardt ML, Zviman A, Shi G, Kerr JP, Snell NE, McFarland JJ, Mauban JR, Ward CW, Rizzo MA, Zhang J (2018) Single-color, ratiometric biosensors for detecting signaling activities in live cells. eLife 7. https://doi.org/10.7554/eLife.35458

  15. Lin W, Mehta S, Zhang J (2019) Genetically encoded fluorescent biosensors illuminate kinase signaling in cancer. J Biol Chem 294(40):14814–14822. https://doi.org/10.1074/jbc.REV119.006177

    Article  PubMed  PubMed Central  Google Scholar 

  16. Greenwald EC, Mehta S, Zhang J (2018) Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem Rev 118(24):11707–11794. https://doi.org/10.1021/acs.chemrev.8b00333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. González-Vera JA, Morris MC (2015) Fluorescent reporters and biosensors for probing the dynamic behavior of protein kinases. Proteomes 3(4):369–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Damayanti NP, Parker LL, Irudayaraj JM (2013) Fluorescence lifetime imaging of biosensor peptide phosphorylation in single live cells. Angew Chem Int Ed Engl 52(14):3931–3934. https://doi.org/10.1002/anie.201209303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Damayanti NP, Jena S, Irudayaraj J, Parker LL. Multiplexable fluorescence lifetime imaging (FLIM) probes for Syk and Src-family kinases. bioRxiv [Internet]. 2019

    Google Scholar 

  20. Ravasco JM, Faustino H, Trindade A, Gois PM (2019) Bioconjugation with Maleimides: a useful tool for chemical biology. Chem Eur J 25(1):43–59

    Article  CAS  PubMed  Google Scholar 

  21. Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV (2014) Long-term stabilization of maleimide–thiol conjugates. Bioconjug Chem 26(1):145–152

    Article  CAS  PubMed  Google Scholar 

  22. Christie RJ, Fleming R, Bezabeh B, Woods R, Mao S, Harper J, Joseph A, Wang Q, Xu Z-Q, Wu H (2015) Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. J Control Release 220:660–670

    Article  CAS  PubMed  Google Scholar 

  23. Maawy AA, Hiroshima Y, Kaushal S, Luiken GA, Hoffman RM, Bouvet M (2013) Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models. J Biomed Opt 18(12):126016

    Article  PubMed  PubMed Central  Google Scholar 

  24. O'Connor D (2012) Time-correlated single photon counting. Academic Press, Cambridge, Massachusetts

    Google Scholar 

  25. Won Y, Moon S, Yang W, Kim D, Han W-T, Kim DY (2011) High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method. Opt Express 19(4):3396–3405

    Article  CAS  PubMed  Google Scholar 

  26. Kim DY, Hwang W, Kim DE, Won Y, Moon S, Lee SY, Kang MG, Han WS (2019) Analog mean-delay method: a new time-domain super-resolution technique for accurate fluorescence lifetime measurement. Single Molecule Spectroscopy and Superresolution Imaging XII. International Society for Optics and Photonics, Bellingham, Washington

    Google Scholar 

  27. Lakowicz JR (1999) Frequency-domain lifetime measurements. In: Principles of fluorescence spectroscopy. Springer, New York, pp 141–184

    Chapter  Google Scholar 

  28. Wahl M (2014) Time-correlated single photon counting. Technical Note, pp 1–14, PicoQuant Website, URL: https://www.picoquant.com/images/uploads/page/files/7253/technote_tcspc.pdf 

  29. Croessmann S, Sheehan JH, Lee K-M, Sliwoski G, He J, Nagy R, Riddle D, Mayer IA, Balko JM, Lanman R (2018) PIK3CA C2 domain deletions hyperactivate phosphoinositide 3-kinase (PI3K), generate oncogene dependence, and are exquisitely sensitive to PI3Kα inhibitors. Clin Cancer Res 24(6):1426–1435

    Article  CAS  PubMed  Google Scholar 

  30. Smith I, Greenside PG, Natoli T, Lahr DL, Wadden D, Tirosh I, Narayan R, Root DE, Golub TR, Subramanian A (2017) Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the connectivity map. PLoS Biol 15(11):e2003213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graf BW, Boppart SA (2010) Imaging and analysis of three-dimensional cell culture models. In: Live cell imaging. Springer, New York, pp 211–227

    Chapter  Google Scholar 

  32. Lindgren M, Hällbrink M, Prochiantz A, Langel Ü (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103

    Article  CAS  PubMed  Google Scholar 

  33. Ossum CG, Wulff T, Hoffmann EK (2006) Regulation of the mitogen-activated protein kinase p44 ERK activity during anoxia/recovery in rainbow trout hypodermal fibroblasts. J Exp Biol 209(9):1765–1776

    Article  CAS  PubMed  Google Scholar 

  34. Hubbard SR, Miller WT (2007) Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 19(2):117–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gocek E, Moulas AN, Studzinski GP (2014) Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 51(3):125–137

    Article  CAS  PubMed  Google Scholar 

  36. Keshvara LM, Isaacson C, Harrison ML, Geahlen RL (1997) Syk activation and dissociation from the B-cell antigen receptor is mediated by phosphorylation of tyrosine 130. J Biol Chem 272(16):10377–10381

    Article  CAS  PubMed  Google Scholar 

  37. Gerritsen H, Asselbergs M, Agronskaia A, Van Sark W (2002) Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J Microsc 206(3):218–224

    Article  CAS  PubMed  Google Scholar 

  38. Kim D, Hwang W, Won Y, Moon S, Kim DY (2018) Enhancement of measurement speed and photon economy in multiphoton detected fluorescence lifetime imaging microscopy. In: Multiphoton Microscopy in the Biomedical Sciences XVIII. International Society for Optics and Photonics, Bellingham, Washington

    Google Scholar 

  39. Schneckenburger H, Wagner M, Weber P, Strauss WS, Sailer R (2004) Autofluorescence lifetime imaging of cultivated cells using a UV picosecond laser diode. J Fluoresc 14(5):649–654

    Article  CAS  PubMed  Google Scholar 

  40. Chacko JV, Eliceiri KW (2019) Autofluorescence lifetime imaging of cellular metabolism: sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity. Cytometry A 95(1):56–69

    Article  CAS  PubMed  Google Scholar 

  41. Zheng Q, Jockusch S, Zhou Z, Blanchard SC (2014) The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem Photobiol 90(2):448–454

    Article  CAS  PubMed  Google Scholar 

  42. Bogdanov AM, Kudryavtseva EI, Lukyanov KA (2012) Anti-fading media for live cell GFP imaging. PLoS One 7(12):e53004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keshava N, Mustard JF (2002) Spectral unmixing. IEEE Signal Process Mag 19(1):44–57

    Article  Google Scholar 

  44. Gómez CA, Sutin J, Wu W, Fu B, Uhlirova H, Devor A, Boas DA, Sakadžić S, Yaseen MA (2018) Phasor analysis of NADH FLIM identifies pharmacological disruptions to mitochondrial metabolic processes in the rodent cerebral cortex. PLoS One 13(3):e0194578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lakner P, Möller Y, Olayioye M, Brucker S, Schenke-Layland K, Monaghan M (2016) A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models. In: Multiphoton Microscopy in the Biomedical Sciences XVI. International Society for Optics and Photonics, Bellingham, Washington

    Google Scholar 

  46. Eichorst JP, Teng KW, Clegg RM (2014) Polar plot representation of time-resolved fluorescence. In: Fluorescence Spectroscopy and Microscopy. Springer, New York, pp 97–112

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie L. Parker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jena, S., Parker, L.L. (2022). Fluorescence Lifetime Imaging Probes for Cell-Based Measurements of Enzyme Activity. In: Rasooly, A., Baker, H., Ossandon, M.R. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2394. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1811-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1811-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1810-3

  • Online ISBN: 978-1-0716-1811-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics