Skip to main content

Phosphate-Methylated Oligonucleotides as a Novel Primer for PCR and RT-PCR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2392))

Abstract

This chapter introduces neutralized DNA (nDNA) as a novel design for the primers of PCR and RT-PCR by methylating phosphate groups of some oligonucleotides in their structures. It starts with an introduction of the nDNA which possesses an electrically chimeric neutral backbone as well as the proposed standards in designing nDNA as a novel primer for PCR and RT-PCR , concluded from various experimental results presented afterward. The primary content comprises empirical data from PCR to compare nDNA and unmodified DNA as primers in terms of ability to distinguish and amplify mismatch templates, activities of polymerase enzymes, melting temperature of double-stranded sequences, and the trials and discussions on various modified positions of the nDNA primers. In summary, nDNA exhibited outstanding performance as a primer for PCR and RT-PCR , compared to unmodified DNA, and is expected to be expanded in diverse applications which require enhanced specificity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kawane K, Motani K, Nagata S (2014) DNA degradation and its defects. Cold Spring Harb Perspect Biol 6:a016394. https://doi.org/10.1101/cshperspect.a016394

    Article  PubMed  PubMed Central  Google Scholar 

  2. Obika S, Nanbu D, Hari Y, Morio K, In Y, Ishida T, Imanishi T (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Lett 38(50):8735–8738. https://doi.org/10.1016/S0040-4039(97)10322-7

    Article  CAS  Google Scholar 

  3. Levin JD, Fiala D, Samala MF, Kahn JD, Peterson RJ (2006) Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Res 34:e142. https://doi.org/10.1093/nar/gkl756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mouritzen P, Nielsen AT, Pfundheller HM, Choleva Y, Kongsbak L, Moller S (2003) Single nucleotide polymorphism genotyping using locked nucleic acid (LNA™). Expert Rev Mol Diagn 3:27–38. https://doi.org/10.1586/14737159.3.1.27

    Article  CAS  PubMed  Google Scholar 

  5. Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc 114:1895–1897

    Article  CAS  Google Scholar 

  6. Wang J, Palecek E, Nielsen PE, Rivas G, Cai X, Shiraishi H, Dontha N, Luo D, Farias PAM (1996) Peptide nucleic acid probes for sequence-specific DNA biosensors. J Am Chem Soc 118:7667–7670. https://doi.org/10.1021/ja9608050

    Article  CAS  Google Scholar 

  7. Ray A, Norden B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–1060. https://doi.org/10.1096/fasebj.14.9.1041

    Article  CAS  PubMed  Google Scholar 

  8. Chen WY, Chen HC, Yang YS, Huang CJ, Chan HWH, Hu WP (2013) Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosens Bioelectron 41:795–801. https://doi.org/10.1016/j.bios.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  9. Hu WP, Tsai CC, Yang YS, HWH C, Chen WY (2018) Synergetic improvements of sensitivity and specificity of nanowire field effect transistor gene chip by designing neutralized DNA as probe. Sci Rep 8:12598. https://doi.org/10.1038/s41598-018-30996-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuo TC, Wu MW, Lin WC, Matulis D, Yang YS, Li SY, Chen WY (2020) Reduction of interstrand charge repulsion of DNA duplexes by salts and by neutral phosphotriesters—contrary effects for harnessing duplex formation. J Taiwan Ins Chem Eng 110:1–7. https://doi.org/10.1016/j.jtice.2020.02.023

    Article  CAS  Google Scholar 

  11. Li TL, Wu MW, Lin WC, Lai CH, Chang YH, Su LJ, Chen WY (2019) Designed phosphate-methylated oligonucleotides as PCR primers for SNP discrimination. Anal Bioanal Chem 411:3871–3880. https://doi.org/10.1007/s00216-019-01865-4

    Article  CAS  PubMed  Google Scholar 

  12. Chen WY, Matulis D, Hu WP, Lai YF, Wang WH (2020) Studies of the interactions mechanism between DNA and silica surfaces by isothermal titration calorimetry. J Taiwan Ins Chem Eng 116:62–66. https://doi.org/10.1016/j.jtice.2020.11.019

    Article  CAS  Google Scholar 

  13. Coenen AJJM, Henckens LHG, Mengerink Y, van der Wal S, Quaedflieg PJLM, Koole LH, Meijer EM (1992) Optimization of the separation of the Rp and Sp diastereomers of phosphate-methylated DNA and RNA dinucleotides. J Chromatogr 596:59–66. https://doi.org/10.1016/0021-9673(92)80202-6

    Article  CAS  PubMed  Google Scholar 

  14. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516. https://doi.org/10.1016/j.tcb.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  15. Vinogradova OA, Pyshnyi DV (2010) Selectivity of enzymatic conversion of oligonucleotide probes during nucleotide polymorphism analysis of DNA. Acta Nat 2:36–53

    Article  CAS  Google Scholar 

  16. Hong CY, Chen WY "Studies of improving detection specificity of single nucleotide variation and miRNAs by phosphate methylated oligoDNA primers" Master Thesis of Department of Chemical and Materials Engineering, National Central University, July, 2021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yih Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, YH., Wu, MW., Chen, YJ., Vu, CA., Hong, CY., Chen, WY. (2022). Phosphate-Methylated Oligonucleotides as a Novel Primer for PCR and RT-PCR. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 2392. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1799-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1799-1_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1798-4

  • Online ISBN: 978-1-0716-1799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics