Skip to main content

Mapping Genetic Interactions in Human Cancer Cells Using a One-Step tRNA-CRISPR System

  • Protocol
  • First Online:
Mapping Genetic Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2381))

  • 1102 Accesses

Abstract

While well studied in yeast, mapping genetic interactions in mammalian cells has been limited due to many technical obstacles. We have recently developed a new one-step tRNA-CRISPR method called TCGI (tRNA-CRISPR for genetic interactions) which generates high-efficiency, barcode-free, and scalable pairwise CRISPR libraries to identify genetic interactions in mammalian cells. Here we describe this method in detail regarding the construction of the pairwise CRISPR libraries and performing high throughput genetic interacting screening and data analysis. This novel TCGI dramatically improves upon the current methods for mapping genetic interactions and screening drug targets for combinational therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jia J, Zhu F, Ma X et al (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8(2):111–128. https://doi.org/10.1038/nrd2683

    Article  CAS  PubMed  Google Scholar 

  2. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9(1):57–67. https://doi.org/10.1038/nrd3010

    Article  CAS  PubMed  Google Scholar 

  3. Koike-Yusa H, Li Y, Tan EP et al (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267–273. https://doi.org/10.1038/nbt.2800

    Article  CAS  PubMed  Google Scholar 

  4. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  Google Scholar 

  6. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science (New York, NY) 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  Google Scholar 

  7. Meyers RM, Bryan JG, McFarland JM et al (2017) Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49(12):1779–1784. https://doi.org/10.1038/ng.3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu JSL, Yusa K (2019) Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods 164–165:29–35. https://doi.org/10.1016/j.ymeth.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  9. Du D, Roguev A, Gordon DE et al (2017) Genetic interaction mapping in mammalian cells using CRISPR interference. Nat Methods 14(6):577–580. https://doi.org/10.1038/nmeth.4286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wong AS, Choi GC, Cui CH et al (2016) Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci U S A 113(9):2544–2549. https://doi.org/10.1073/pnas.1517883113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erard N, Knott SRV, Hannon GJ (2017) A CRISPR resource for individual, combinatorial, or multiplexed gene knockout. Mol Cell 67(6):1080. https://doi.org/10.1016/j.molcel.2017.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han K, Jeng EE, Hess GT et al (2017) Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 35(5):463–474. https://doi.org/10.1038/nbt.3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hill AJ, McFaline-Figueroa JL, Starita LM et al (2018) On the design of CRISPR-based single-cell molecular screens. Nat Methods 15(4):271–274. https://doi.org/10.1038/nmeth.4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112(11):3570–3575. https://doi.org/10.1073/pnas.1420294112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong F, Xie K, Chen Y et al (2017) Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochem Biophys Res Commun 482(4):889–895. https://doi.org/10.1016/j.bbrc.2016.11.129

    Article  CAS  PubMed  Google Scholar 

  16. Port F, Bullock SL (2016) Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat Methods 13(10):852–854. https://doi.org/10.1038/nmeth.3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191. https://doi.org/10.1038/nbt.3437

  18. Ewels P, Magnusson M, Lundin S et al (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue):W214–W220. https://doi.org/10.1093/nar/gkq537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, D.Y., Gui, X., Yang, X. (2021). Mapping Genetic Interactions in Human Cancer Cells Using a One-Step tRNA-CRISPR System. In: Vizeacoumar, F.J., Freywald, A. (eds) Mapping Genetic Interactions. Methods in Molecular Biology, vol 2381. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1740-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1740-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1739-7

  • Online ISBN: 978-1-0716-1740-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics