Skip to main content

Analyze Mouse Knockout Models of UPR Pathway Elements

  • Protocol
  • First Online:
The Unfolded Protein Response

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2378))

Abstract

Evidence from genetic studies in human and mice indicates that defective skeletal development is one of the major phenotypic outcomes for aberrant UPR signaling. Visualization of morphological alterations in whole-mount skeleton and protein secretion and UPR activation on tissue sections is the very first step to investigate skeletal phenotypes of UPR-related mouse models. In this chapter, we introduce the major techniques that have been frequently used in our laboratory to study UPR-induced skeletal disorders with genetically modified mice and provide descriptive directions of mouse genotyping, bone tissue grossing, whole-mount skeletal staining, immunostaining assays of matrix secretion, and UPR activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hetz C, Zhang K, Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21:421–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  3. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    Article  CAS  PubMed  Google Scholar 

  4. Briggs MD, Dennis EP, Dietmar HF, Pirog KA (2020) New developments in chondrocyte ER stress and related diseases. F1000Res 9. https://doi.org/10.12688/f1000research.22275.1

  5. Yip RKH, Chan D, Cheah KSE (2019) Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 133:343–385

    Article  CAS  PubMed  Google Scholar 

  6. Rellmann Y, Dreier R (2018) Different forms of ER stress in chondrocytes result in short stature disorders and degenerative cartilage diseases: new insights by cartilage-specific ERp57 knockout mice. Oxidative Med Cell Longev 2018:8421394

    Article  Google Scholar 

  7. Wang C, Tan Z, Niu B, Tsang KY, Tai A, Chan WCW, Lo RLK, Leung KKH, Dung NWF, Itoh N, Zhang MQ, Chan D, Cheah KSE (2018) Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. elife 7:e37673

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kuhn R, Wurst W (2009) Overview on mouse mutagenesis. Methods Mol Biol 530:1–12

    Article  PubMed  Google Scholar 

  9. Sakamoto K, Gurumurthy CB, Wagner KU (2014) Generation of conditional knockout mice. Methods Mol Biol 1194:21–35

    Article  PubMed  Google Scholar 

  10. Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204

    CAS  PubMed  Google Scholar 

  11. Myllyharju J (2014) Extracellular matrix and developing growth plate. Curr Osteoporos Rep 12:439–445

    Article  PubMed  Google Scholar 

  12. Mack SA, Maltby KM, Hilton MJ (2014) Demineralized murine skeletal histology. Methods Mol Biol 1130:165–183

    Article  CAS  PubMed  Google Scholar 

  13. Rickelt S, Hynes RO (2018) Antibodies and methods for immunohistochemistry of extracellular matrix proteins. Matrix Biol 71-72:10–27

    Article  CAS  PubMed  Google Scholar 

  14. Yamashita S, Katsumata O (2017) Heat-induced antigen retrieval in immunohistochemistry: mechanisms and applications. Methods Mol Biol 1560:147–161

    Article  CAS  PubMed  Google Scholar 

  15. Zheng C, Lin X, Xu X, Wang C, Zhou J, Gao B, Fan J, Lu W, Hu Y, Jie Q, Luo Z, Yang L (2019) Suppressing UPR-dependent overactivation of FGFR3 signaling ameliorates SLC26A2-deficient chondrodysplasias. EBioMedicine 40:695–709

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Kathryn S.E.Cheah for the ColX antibody . This work was supported by the National Natural Science Foundation of China (81871743, 82002261, and 81972032) and the Shaanxi Innovation Team Project (2020TD-036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Jie or Liu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zheng, C., Wang, C., Jie, Q., Yang, L. (2022). Analyze Mouse Knockout Models of UPR Pathway Elements. In: Pérez-Torrado, R. (eds) The Unfolded Protein Response. Methods in Molecular Biology, vol 2378. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1732-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1732-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1731-1

  • Online ISBN: 978-1-0716-1732-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics