Skip to main content

Labeling of Proteins for Single-Molecule Fluorescence Spectroscopy

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

Abstract

Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. This chapter describes a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung S, Michalet X, Weiss S (2018) Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359(6373):eaan1133

    Google Scholar 

  2. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  3. Selvin PR, Ha T (2008) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  4. Dunkle JA, Cate JHD (2010) Ribosome structure and dynamics during translocation and termination. Annu Rev Biophys 39:227–244

    Article  CAS  PubMed  Google Scholar 

  5. Kapanidis AN, Strick T (2009) Biology, one molecule at a time. Trends Biochem Sci 34(5):234–243

    Article  CAS  PubMed  Google Scholar 

  6. Ha T, Kozlov AG, Lohman TM (2012) Single-molecule views of protein movement on single-stranded DNA. Annu Rev Biophys 41:295–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smiley RD, Hammes GG (2006) Single molecule studies of enzyme mechanisms. Chem Rev 106(8):3080–3094

    Article  CAS  PubMed  Google Scholar 

  8. Zhuang XW (2005) Single-molecule RNA science. Annu Rev Biophys Biomol Struct 34:399–414

    Article  CAS  PubMed  Google Scholar 

  9. Schuler B, Hofmann H (2013) Single-molecule spectroscopy of protein folding dynamics-expanding scope and timescales. Curr Opin Struct Biol 23(1):36–47

    Article  CAS  PubMed  Google Scholar 

  10. Muñoz V, Cerminara M (2016) When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. Biochem J 473(17):2545–2559

    Article  PubMed  Google Scholar 

  11. Brucale M, Schuler B, Samori B (2014) Single-molecule studies of intrinsically disordered proteins. Chem Rev 114(6):3281–3317

    Article  CAS  PubMed  Google Scholar 

  12. Schuler B, Hofmann H, Soranno A, Nettels D (2016) Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu Rev Biophys 45:207–231

    Article  CAS  PubMed  Google Scholar 

  13. Ferreon AC, Moran CR, Gambin Y, Deniz AA (2010) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179–204

    Article  CAS  PubMed  Google Scholar 

  14. Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514

    Article  CAS  PubMed  Google Scholar 

  15. Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong X, Weiss S (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38(7):523–533

    Article  CAS  PubMed  Google Scholar 

  16. Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117(24):10953–10964

    Article  CAS  Google Scholar 

  17. Kim Y, Ho SO, Gassman NR, Korlann Y, Landorf EV, Collart FR, Weiss S (2008) Efficient site-specific labeling of proteins via cysteines. Bioconjug Chem 19(3):786–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ratner V, Kahana E, Eichler M, Haas E (2002) A general strategy for site-specific double labeling of globular proteins for kinetic FRET studies. Bioconjug Chem 13(5):1163–1170

    Article  CAS  PubMed  Google Scholar 

  19. Lemke EA (2011) Site-specific labeling of proteins for single-molecule FRET measurements using genetically encoded ketone functionalities. Methods Mol Biol 751:3–15

    Article  CAS  PubMed  Google Scholar 

  20. Popp MW (2015) Site-specific labeling of proteins via sortase: protocols for the molecular biologist. Methods Mol Biol 1266:185–198

    Article  CAS  PubMed  Google Scholar 

  21. Haenni D, Zosel F, Reymond L, Nettels D, Schuler B (2013) Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. J Phys Chem B 117(42):13015–13028

    Article  CAS  PubMed  Google Scholar 

  22. Hohng S, Joo C, Ha T (2004) Single-molecule three-color FRET. Biophys J 87(2):1328–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zosel F, Haenni D, Soranno A, Nettels D, Schuler B (2017) Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein. J Chem Phys 147(15):152708

    Article  PubMed  Google Scholar 

  24. Doose S, Neuweiler H, Sauer M (2009) Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10(9–10):1389–1398

    Article  CAS  PubMed  Google Scholar 

  25. Hermanson GT (2013) Bioconjugate Techniques, 3rd edn, pp 1–1146

    Book  Google Scholar 

  26. Shafer DE, Inman JK, Lees A (2000) Reaction of Tris(2-carboxyethyl)phosphine (TCEP) with maleimide and alpha-haloacyl groups: anomalous elution of TCEP by gel filtration. Anal Biochem 282(1):161–164

    Article  CAS  PubMed  Google Scholar 

  27. Liu P, O'Mara BW, Warrack BM, Wu W, Huang Y, Zhang Y, Zhao R, Lin M, Ackerman MS, Hocknell PK, Chen G, Tao L, Rieble S, Wang J, Wang-Iverson DB, Tymiak AA, Grace MJ, Russell RJ (2010) A tris (2-carboxyethyl) phosphine (TCEP) related cleavage on cysteine-containing proteins. J Am Soc Mass Spectrom 21(5):837–844

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Mira MM, Sanchez-Ruiz JM (2001) pH corrections and protein ionization in water/guanidinium chloride. Biophys J 81(6):3489–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalinin S, Peulen T, Sindbert S, Rothwell PJ, Berger S, Restle T, Goody RS, Gohlke H, Seidel CA (2012) A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat Methods 9(12):1218–1225

    Article  CAS  PubMed  Google Scholar 

  30. Müller-Späth S, Soranno A, Hirschfeld V, Hofmann H, Rüegger S, Reymond L, Nettels D, Schuler B (2010) Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci U S A 107(33):14609–14614

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chung HS, Louis JM, Eaton WA (2010) Distinguishing between protein dynamics and dye photophysics in single-molecule FRET experiments. Biophys J 98(4):696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen HM, Ahsan SS, Santiago-Berrios MB, Abruna HD, Webb WW (2010) Mechanisms of quenching of Alexa fluorophores by natural amino acids. J Am Chem Soc 132(21):7244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soranno A, Holla A, Dingfelder F, Nettels D, Makarov DE, Schuler B (2017) Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc Natl Acad Sci U S A 114(10):E1833–E1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marme N, Knemeyer JP, Sauer M, Wolfrum J (2003) Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjug Chem 14(6):1133–1139

    Article  CAS  PubMed  Google Scholar 

  35. Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA (2001) Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem 12(6):1051–1056

    Article  CAS  PubMed  Google Scholar 

  36. Jacob MH, Amir D, Ratner V, Gussakowsky E, Haas E (2005) Predicting reactivities of protein surface cysteines as part of a strategy for selective multiple labeling. Biochemistry 44(42):13664–13672

    Article  CAS  PubMed  Google Scholar 

  37. Rostkowski M, Olsson MH, Sondergaard CR, Jensen JH (2011) Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct Biol 11:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Altman RB, Zheng Q, Zhou Z, Terry DS, Warren JD, Blanchard SC (2012) Enhanced photostability of cyanine fluorophores across the visible spectrum. Nat Methods 9(5):428–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koenig I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B, Dingfelder F, Stüber JC, Plückthun A, Nettels D, Schuler B (2015) Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat Methods 12(8):773–779

    Article  Google Scholar 

  40. Aigrain L, Crawford R, Torella J, Plochowietz A, Kapanidis A (2012) Single-molecule FRET measurements in bacterial cells. FEBS J 279:513–513

    Google Scholar 

  41. Borgia A, Zheng W, Buholzer K, Borgia MB, Schuler A, Hofmann H, Soranno A, Nettels D, Gast K, Grishaev A, Best RB, Schuler B (2016) Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J Am Chem Soc 138(36):11714–11726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ion Exchange Chromatography Principles and Methods (2021) Cytiva. https://cdn.cytivalifesciences.com/dmm3bwsv3/AssetStream.aspx?mediaformatid=10061&destinationid=10016&assetid=13101. Accessed 08.07.2021

  43. Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV (2015) Long-term stabilization of maleimide-thiol conjugates. Bioconjug Chem 26(1):145–152

    Article  CAS  PubMed  Google Scholar 

  44. Hendrix J, Lamb DC (2013) Pulsed interleaved excitation: principles and applications. Methods Enzymol 518:205–243

    Article  CAS  PubMed  Google Scholar 

  45. Shechter Y (1986) Selective oxidation and reduction of methionine residues in peptides and proteins by oxygen exchange between sulfoxide and sulfide. J Biol Chem 261(1):66–70

    Article  CAS  PubMed  Google Scholar 

  46. Benke S, Roderer D, Wunderlich B, Nettels D, Glockshuber R, Schuler B (2015) The assembly dynamics of the cytolytic pore toxin ClyA. Nat Commun 6:6198

    Article  CAS  PubMed  Google Scholar 

  47. Wallace AJ, Stillman TJ, Atkins A, Jamieson SJ, Bullough PA, Green J, Artymiuk PJ (2000) E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100(2):265–276

    Article  CAS  PubMed  Google Scholar 

  48. Kjaergaard M, Teilum K, Poulsen FM (2010) Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proc Natl Acad Sci U S A 107(28):12535–12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Serge Chesnov and the Functional Genomics Center Zurich for expert mass spectrometry and MS data analysis, Fabian Dingfelder for contributing chromatograms and single-molecule data on ClyA, Erik D. Holmstrom for providing single-molecule data on NCBD, and Daniel Nettels for providing data analysis software and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schuler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zosel, F., Holla, A., Schuler, B. (2022). Labeling of Proteins for Single-Molecule Fluorescence Spectroscopy. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics