Skip to main content

Activation of Astrocytes in Neurodegenerative Diseases

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

  • 1441 Accesses

Abstract

Astrocytes are the most abundant cells in the central nervous system (CNS). Under neurodegenerative conditions, astrocytes can go through various morphological and functional changes and then transform into reactive forms. Therefore, compared with normal physiological conditions, the expression and distribution of many cellular molecules in reactive astrocytes show significant changes. It will be of great benefit for research and clinical practice if these molecular alterations of astrocytes can be used as biomarkers for the study of neurodegenerative diseases. In this chapter, we will comprehensively introduce some potential biomarkers involving various aspects of activated astrocytes, including structural and functional characteristics, and their participation in neuroinflammatory responses, such as GFAP, glutamate transporters, and S100β. We will analyze the advantages and limitations of traditional biomarkers of reactive astrocytes, such as GFAP, and provide some insights into potentially novel biomarkers. Then we will give a brief introduction of potential biomarkers in some typical neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Finally, we provide some methods applied in biomarker studies for reference. These methods range from astrocyte isolating, culture, and further biomarker analysis to clinical techniques such as molecular imaging. In the future, advances in the detection of biomarkers in astrocytes under neurodegenerative conditions will not only shed light on early diagnosis but also be illuminating in the treatment of neurodegenerative diseases, which is still in a rather difficult stage, by serving as potential targets for drugs. More analyses of astrocytes based on these biomarkers and a deeper understanding of the molecular pathogenesis of neurodegenerative diseases will undoubtedly bring hope to individual patients, their families, and the whole society as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whalley K (2014) Neurodegenerative disease: propagating pathology. Nat Rev Neurosci 15(9):565. https://doi.org/10.1038/nrn3802

    Article  CAS  PubMed  Google Scholar 

  2. Montie HL, Durcan TM (2013) The cell and molecular biology of neurodegenerative diseases: an overview. Front Neurol 4:194. https://doi.org/10.3389/fneur.2013.00194

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li K, Li J, Zheng J, Qin S (2019) Reactive astrocytes in neurodegenerative diseases. Aging Dis 10(3):664–675. https://doi.org/10.14336/AD.2018.0720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539(7628):180–186. https://doi.org/10.1038/nature20411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fakhoury M (2018) Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16(5):508–518. https://doi.org/10.2174/1570159X15666170720095240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jung CK, Keppler K, Steinbach S, Blazquez-Llorca L, Herms J (2015) Fibrillar amyloid plaque formation precedes microglial activation. PLoS One 10(3):e0119768. https://doi.org/10.1371/journal.pone.0119768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ries M, Sastre M (2016) Mechanisms of abeta clearance and degradation by glial cells. Front Aging Neurosci 8:160. https://doi.org/10.3389/fnagi.2016.00160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F et al (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–457. https://doi.org/10.1038/nm838

    Article  CAS  PubMed  Google Scholar 

  9. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW et al (2015) NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85(1):101–115. https://doi.org/10.1016/j.neuron.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  10. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. https://doi.org/10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  12. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098. https://doi.org/10.1152/physrev.00041.2013

    Article  PubMed  Google Scholar 

  13. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164(4):603–615. https://doi.org/10.1016/j.cell.2015.12.056

    Article  CAS  PubMed  Google Scholar 

  14. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  15. Muller HW, Matthiessen HP, Schmalenbach C, Schroeder WO (1991) Glial support of CNS neuronal survival, neurite growth and regeneration. Restor Neurol Neurosci 2(4):229–232. https://doi.org/10.3233/RNN-1991-245610

    Article  CAS  PubMed  Google Scholar 

  16. Yang D, Peng C, Li X, Fan X, Li L, Ming M et al (2008) Pitx3-transfected astrocytes secrete brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and protect dopamine neurons in mesencephalon cultures. J Neurosci Res 86(15):3393–3400. https://doi.org/10.1002/jnr.21774

    Article  CAS  PubMed  Google Scholar 

  17. Gengatharan A, Bammann RR, Saghatelyan A (2016) The role of astrocytes in the generation, migration, and integration of new neurons in the adult olfactory bulb. Front Neurosci 10:149. https://doi.org/10.3389/fnins.2016.00149

    Article  PubMed  PubMed Central  Google Scholar 

  18. Theodosis DT, Piet R, Poulain DA, Oliet SH (2004) Neuronal, glial and synaptic remodeling in the adult hypothalamus: functional consequences and role of cell surface and extracellular matrix adhesion molecules. Neurochem Int 45(4):491–501. https://doi.org/10.1016/j.neuint.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  19. Inyushin M, Kucheryavykh LY, Kucheryavykh YV, Nichols CG, Buono RJ, Ferraro TN et al (2010) Potassium channel activity and glutamate uptake are impaired in astrocytes of seizure-susceptible DBA/2 mice. Epilepsia 51(9):1707–1713. https://doi.org/10.1111/j.1528-1167.2010.02592.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gadea A, Schinelli S, Gallo V (2008) Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci 28(10):2394–2408. https://doi.org/10.1523/JNEUROSCI.5652-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levison SW, Jiang FJ, Stoltzfus OK, Ducceschi MH (2000) IL-6-type cytokines enhance epidermal growth factor-stimulated astrocyte proliferation. Glia 32(3):328–337. https://doi.org/10.1002/1098-1136(200012)32:3<328::aid-glia110>3.0.co;2-7

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A (2014) Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 35(1):15–23. https://doi.org/10.1016/j.neurobiolaging.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  23. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Forster S, Grimmer T, Miederer I, Henriksen G, Yousefi BH, Graner P et al (2012) Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 71(9):792–797. https://doi.org/10.1016/j.biopsych.2011.04.023

    Article  CAS  PubMed  Google Scholar 

  25. Yao J, Rettberg JR, Klosinski LP, Cadenas E, Brinton RD (2011) Shift in brain metabolism in late onset Alzheimer’s disease: implications for biomarkers and therapeutic interventions. Mol Asp Med 32(4–6):247–257. https://doi.org/10.1016/j.mam.2011.10.005

    Article  CAS  Google Scholar 

  26. Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu W et al (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep 10(4):633–644. https://doi.org/10.1016/j.celrep.2014.12.041

    Article  CAS  PubMed  Google Scholar 

  27. Karch CM, Cruchaga C, Goate AM (2014) Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83(1):11–26. https://doi.org/10.1016/j.neuron.2014.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011) Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2:e167. https://doi.org/10.1038/cddis.2011.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jana A, Pahan K (2010) Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci 30(38):12676–12689. https://doi.org/10.1523/JNEUROSCI.1243-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421. https://doi.org/10.1016/s0197-4580(00)00124-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V et al (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345. https://doi.org/10.1007/s00401-015-1513-1

    Article  CAS  PubMed  Google Scholar 

  32. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248. https://doi.org/10.1016/j.neuron.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38. https://doi.org/10.1016/j.neulet.2013.12.071

    Article  CAS  PubMed  Google Scholar 

  34. Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7(3):194–206. https://doi.org/10.1038/nrn1870

    Article  CAS  PubMed  Google Scholar 

  35. Verkhratsky A, Sofroniew MV, Messing A, de Lanerolle NC, Rempe D, Rodriguez JJ et al (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4(3). https://doi.org/10.1042/AN20120010

  36. Vasile F, Dossi E, Rouach N (2017) Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct 222(5):2017–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taft JR, Vertes RP, Perry GW (2005) Distribution of GFAP+ astrocytes in adult and neonatal rat brain. Int J Neurosci 115(9):1333–1343. https://doi.org/10.1080/00207450590934570

    Article  CAS  PubMed  Google Scholar 

  38. Guillamon-Vivancos T, Gomez-Pinedo U, Matias-Guiu J (2015) Astrocytes in neurodegenerative diseases (I): function and molecular description. Neurologia 30(2):119–129. https://doi.org/10.1016/j.nrl.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  39. Reeves SA, Helman LJ, Allison A, Israel MA (1989) Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci U S A 86(13):5178–5182. https://doi.org/10.1073/pnas.86.13.5178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Condorelli DF, Nicoletti VG, Barresi V, Conticello SG, Caruso A, Tendi EA et al (1999) Structural features of the rat GFAP gene and identification of a novel alternative transcript. J Neurosci Res 56(3):219–228. https://doi.org/10.1002/(SICI)1097-4547(19990501)56:3<219::AID-JNR1>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  41. Zelenika D, Grima B, Brenner M, Pessac B (1995) A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res Mol Brain Res 30(2):251–258. https://doi.org/10.1016/0169-328x(95)00010-p

    Article  CAS  PubMed  Google Scholar 

  42. Roelofs RF, Fischer DF, Houtman SH, Sluijs JA, Van Haren W, Van Leeuwen FW et al (2005) Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 52(4):289–300. https://doi.org/10.1002/glia.20243

    Article  PubMed  Google Scholar 

  43. Nielsen AL, Holm IE, Johansen M, Bonven B, Jorgensen P, Jorgensen AL (2002) A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem 277(33):29983–29991. https://doi.org/10.1074/jbc.M112121200

    Article  CAS  PubMed  Google Scholar 

  44. Blechingberg J, Holm IE, Nielsen KB, Jensen TH, Jorgensen AL, Nielsen AL (2007) Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia 55(5):497–507. https://doi.org/10.1002/glia.20475

    Article  PubMed  Google Scholar 

  45. Hol EM, Roelofs RF, Moraal E, Sonnemans MA, Sluijs JA, Proper EA et al (2003) Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 8(9):786–796. https://doi.org/10.1038/sj.mp.4001379

    Article  CAS  PubMed  Google Scholar 

  46. van den Berge SA, Middeldorp J, Zhang CE, Curtis MA, Leonard BW, Mastroeni D et al (2010) Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta. Aging Cell 9(3):313–326. https://doi.org/10.1111/j.1474-9726.2010.00556.x

    Article  CAS  PubMed  Google Scholar 

  47. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716. https://doi.org/10.1016/s0092-8674(00)80783-7

    Article  CAS  PubMed  Google Scholar 

  48. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(6976):740–744. https://doi.org/10.1038/nature02301

    Article  CAS  PubMed  Google Scholar 

  49. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494(3):415–434. https://doi.org/10.1002/cne.20798

    Article  PubMed  Google Scholar 

  50. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  51. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13. https://doi.org/10.1016/j.nbd.2003.12.016

    Article  CAS  PubMed  Google Scholar 

  52. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87. https://doi.org/10.1016/j.tins.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  53. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30. https://doi.org/10.1007/978-3-319-08894-5_2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896. https://doi.org/10.1016/j.neuroscience.2004.09.053

    Article  CAS  PubMed  Google Scholar 

  55. Zador Z, Stiver S, Wang V, Manley GT (2009) Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 190:159–170. https://doi.org/10.1007/978-3-540-79885-9_7

    Article  CAS  Google Scholar 

  56. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530. https://doi.org/10.1016/j.tins.2003.08.008

    Article  CAS  PubMed  Google Scholar 

  57. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3):430–440

    Article  CAS  PubMed  Google Scholar 

  58. Borjabad A, Volsky DJ (2012) Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer’s disease, and multiple sclerosis. J Neuroimmune Pharmacol 7(4):914–926. https://doi.org/10.1007/s11481-012-9409-5

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cotto B, Natarajaseenivasan K, Langford D (2019) Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND. J Neurovirol 25(5):722–733. https://doi.org/10.1007/s13365-019-00721-6

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wilhelmsson U, Bushong EA, Price DL, Smarr B, Phung V, Terada M et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103(46):17513–17518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156. https://doi.org/10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  63. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF (2003) Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 23(21):7789–7800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28(28):7231–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23(2):297–308. https://doi.org/10.1016/s0896-6273(00)80781-3

    Article  CAS  PubMed  Google Scholar 

  66. Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S et al (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 29(37):11511–11522. https://doi.org/10.1523/JNEUROSCI.1514-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hofmann SL, Das AK, Lu J, Wisniewski KE, Gupta P (2001) Infantile neuronal ceroid lipofuscinosis:no longer just a ‘Finnish’ disease. Eur J Paediatr Neurol 5:47–51

    Article  PubMed  Google Scholar 

  68. Hofmann SL, Das AK, Yi W, Lu JY, Wisniewski KE (1999) Genotype–phenotype correlations in neuronal ceroid lipofuscinosis due to palmitoyl-protein thioesterase deficiency. Mol Genet Metab 66(4):234–239

    Article  CAS  PubMed  Google Scholar 

  69. Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P et al (1995) Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376(6541):584–587. https://doi.org/10.1038/376584a0

    Article  CAS  PubMed  Google Scholar 

  70. Kielar C, Maddox L, Bible E, Pontikis CC, Macauley SL, Griffey MA et al (2007) Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 25(1):150–162. https://doi.org/10.1016/j.nbd.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  71. Macauley SL, Wozniak DF, Kielar C, Tan Y, Cooper JD, Sands MS (2009) Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-deficient mouse. Exp Neurol 217(1):124–135. https://doi.org/10.1016/j.expneurol.2009.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27(1):117–120. https://doi.org/10.1038/83679

    Article  CAS  PubMed  Google Scholar 

  73. Messing A, LaPash Daniels CM, Hagemann TL (2010) Strategies for treatment in Alexander disease. Neurotherapeutics 7(4):507–515. https://doi.org/10.1016/j.nurt.2010.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kamphuis W, Middeldorp J, Kooijman L, Sluijs JA, Kooi EJ, Moeton M et al (2014) Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease. Neurobiol Aging 35(3):492–510. https://doi.org/10.1016/j.neurobiolaging.2013.09.035

    Article  CAS  PubMed  Google Scholar 

  75. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. https://doi.org/10.1007/BF00308809

    Article  CAS  PubMed  Google Scholar 

  76. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. https://doi.org/10.1146/annurev.neuro.051508.135600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29(24):7743–7752. https://doi.org/10.1523/JNEUROSCI.0341-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews FE et al (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 31(4):578–590

    Article  CAS  PubMed  Google Scholar 

  79. Simpson JE, Ince PG, Shaw PJ, Heath PR, Raman R, Garwood CJ et al (2011) Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol Aging 32(10):1795–1807. https://doi.org/10.1016/j.neurobiolaging.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  80. Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H (2010) Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain 3:12. https://doi.org/10.1186/1756-6606-3-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L et al (1998) Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20(3):589–602. https://doi.org/10.1016/s0896-6273(00)80997-6

    Article  CAS  PubMed  Google Scholar 

  82. Maragakis NJ, Dykes-Hoberg M, Rothstein JD (2004) Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol 55(4):469–477. https://doi.org/10.1002/ana.20003

    Article  CAS  PubMed  Google Scholar 

  83. Alexander GM, Deitch JS, Seeburger JL, Del Valle L, Heiman-Patterson TD (2000) Elevated cortical extracellular fluid glutamate in transgenic mice expressing human mutant (G93A) Cu/Zn superoxide dismutase. J Neurochem 74(4):1666–1673. https://doi.org/10.1046/j.1471-4159.2000.0741666.x

    Article  CAS  PubMed  Google Scholar 

  84. Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD (2010) Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58(3):277–286. https://doi.org/10.1002/glia.20922

    Article  PubMed  PubMed Central  Google Scholar 

  85. Li K, Hala TJ, Seetharam S, Poulsen DJ, Wright MC, Lepore AC (2015) GLT1 overexpression in SOD1(G93A) mouse cervical spinal cord does not preserve diaphragm function or extend disease. Neurobiol Dis 78:12–23. https://doi.org/10.1016/j.nbd.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  86. Bristol LA, Rothstein JD (1996) Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol 39(5):676–679. https://doi.org/10.1002/ana.410390519

    Article  CAS  PubMed  Google Scholar 

  87. Flowers JM, Powell J, Leigh PN, Andersen PM, Shaw C (2001) Intron 7 retention and exon 9 skipping EAAT2 mRNA variants are not associated with amyotrophic lateral sclerosis. Ann Neurol 49(5):643–649

    Article  CAS  PubMed  Google Scholar 

  88. Jiang LL, Zhu B, Zhao Y, Li X, Liu T, Pina-Crespo J et al (2019) Membralin deficiency dysregulates astrocytic glutamate homeostasis leading to ALS-like impairment. J Clin Invest 129(8):3103–3120. https://doi.org/10.1172/JCI127695

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fray AE, Ince PG, Banner SJ, Milton ID, Usher PA, Cookson MR et al (1998) The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 10(8):2481–2489. https://doi.org/10.1046/j.1460-9568.1998.00273.x

    Article  CAS  PubMed  Google Scholar 

  90. Estradasanchez AM, Rebec GV (2012) Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington’s disease: interactions between neurons and astrocytes. Basal Ganglia 2(2):57–66

    Article  Google Scholar 

  91. Duerson K, Woltjer RL, Mookherjee P, Leverenz JB, Montine TJ, Bird TD et al (2009) Detergent-insoluble EAAC1/EAAT3 aberrantly accumulates in hippocampal neurons of Alzheimer’s disease patients. Brain Pathol 19(2):267–278. https://doi.org/10.1111/j.1750-3639.2008.00186.x

    Article  CAS  PubMed  Google Scholar 

  92. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR et al (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1–42. J Neurochem 78(2):413–416. https://doi.org/10.1046/j.1471-4159.2001.00451.x

    Article  CAS  PubMed  Google Scholar 

  93. Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol Aging 32(3):553.e1–553.11. https://doi.org/10.1016/j.neurobiolaging.2010.03.008

    Article  CAS  Google Scholar 

  94. Woltjer RL, Duerson K, Fullmer JM, Mookherjee P, Ryan AM, Montine TJ et al (2010) Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease. J Neuropathol Exp Neurol 69(7):667–676. https://doi.org/10.1097/NEN.0b013e3181e24adb

    Article  CAS  PubMed  Google Scholar 

  95. Norenberg MD (1979) Distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27(3):756–762. https://doi.org/10.1177/27.3.39099

    Article  CAS  PubMed  Google Scholar 

  96. Patel AJ, Weir MD, Hunt A, Tahourdin CS, Thomas DG (1985) Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of the rat central nervous system. Brain Res 331(1):1–9. https://doi.org/10.1016/0006-8993(85)90708-5

    Article  CAS  PubMed  Google Scholar 

  97. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41(6):1518–1524. https://doi.org/10.1042/BST20130237

    Article  CAS  PubMed  Google Scholar 

  98. Li K-Y, Gong P-F, Li J-T, Xu N-J, Qin S (2020) Morphological and molecular alterations of reactive astrocytes without proliferation in cerebral cortex of an APP/PS1 transgenic mouse model and Alzheimer’s patients. Glia 68(11):2361–2376. https://doi.org/10.1002/glia.23845

    Article  PubMed  Google Scholar 

  99. Goncalves C, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41(10):755–763

    Article  CAS  PubMed  Google Scholar 

  100. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322(4):1111–1122. https://doi.org/10.1016/j.bbrc.2004.07.096

    Article  CAS  PubMed  Google Scholar 

  101. Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33(7):637–668. https://doi.org/10.1016/s1357-2725(01)00046-2

    Article  CAS  PubMed  Google Scholar 

  102. Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60(6):540–551. https://doi.org/10.1002/jemt.10296

    Article  CAS  PubMed  Google Scholar 

  103. Harris JL, Yeh HW, Swerdlow RH, Choi IY, Lee P, Brooks WM (2014) High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging. Neurobiol Aging 35(7):1686–1694. https://doi.org/10.1016/j.neurobiolaging.2014.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harris JL, Choi IY, Brooks WM (2015) Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain. Front Aging Neurosci 7:202. https://doi.org/10.3389/fnagi.2015.00202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G et al (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62(1):15–30. https://doi.org/10.1016/0306-4522(94)90311-5

    Article  CAS  PubMed  Google Scholar 

  106. Gulyas B, Pavlova E, Kasa P, Gulya K, Bakota L, Varszegi S et al (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-l-deprenyl using whole hemisphere autoradiography. Neurochem Int 58(1):60–68

    Article  CAS  PubMed  Google Scholar 

  107. Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB (2017) Review: Astrocytes in Alzheimer’s disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 43(4):281–298. https://doi.org/10.1111/nan.12338

    Article  CAS  PubMed  Google Scholar 

  108. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  109. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372. https://doi.org/10.1038/nrn3880

    Article  CAS  PubMed  Google Scholar 

  110. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012:756357. https://doi.org/10.1100/2012/756357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heneka MT, O’Banion MK, Terwel D, Kummer MP (2010) Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm (Vienna) 117(8):919–947. https://doi.org/10.1007/s00702-010-0438-z

    Article  CAS  Google Scholar 

  112. Phillips EC, Croft CL, Kurbatskaya K, Oneill MJ, Hutton M, Hanger DP et al (2014) Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans 42(5):1321–1325

    Article  CAS  PubMed  Google Scholar 

  113. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gao Q, Li Y, Chopp M (2005) Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult. Neuroscience 136(1):123–134. https://doi.org/10.1016/j.neuroscience.2005.06.091

    Article  CAS  PubMed  Google Scholar 

  115. Hayakawa K, Pham LD, Arai K, Lo EH (2014) Reactive astrocytes promote adhesive interactions between brain endothelium and endothelial progenitor cells via HMGB1 and beta-2 integrin signaling. Stem Cell Res 12(2):531–538

    Article  CAS  PubMed  Google Scholar 

  116. Borjabad A, Brooks AI, Volsky DJ (2010) Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 5(1):44–62. https://doi.org/10.1007/s11481-009-9167-1

    Article  PubMed  Google Scholar 

  117. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yan P, Hu X, Song H, Yin K, Bateman RJ, Cirrito JR et al (2006) Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 281(34):24566–24574. https://doi.org/10.1074/jbc.M602440200

    Article  CAS  PubMed  Google Scholar 

  119. Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X et al (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43):10939–10948. https://doi.org/10.1523/JNEUROSCI.2085-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. John GR, Lee SC, Brosnan CF (2003) Cytokines: powerful regulators of glial cell activation. Neuroscientist 9(1):10–22. https://doi.org/10.1177/1073858402239587

    Article  CAS  PubMed  Google Scholar 

  121. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5):608–614. https://doi.org/10.1038/nn1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. https://doi.org/10.1016/j.it.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  123. Bekar LK, He W, Nedergaard M (2008) Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex 18(12):2789–2795. https://doi.org/10.1093/cercor/bhn040

    Article  PubMed  PubMed Central  Google Scholar 

  124. Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23(6):2348–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4(2):193–205. https://doi.org/10.2174/1566524043479185

    Article  CAS  PubMed  Google Scholar 

  126. Norenberg MD, Rao KVR, Jayakumar AR (2009) Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis 24(1):103–117

    Article  CAS  PubMed  Google Scholar 

  127. Migheli A, Piva R, Atzori C, Troost D, Schiffer D (1997) c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 56(12):1314–1322

    Article  CAS  PubMed  Google Scholar 

  128. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684. https://doi.org/10.1038/sj.onc.1209954

    Article  CAS  PubMed  Google Scholar 

  129. Ceyzeriat K, Abjean L, Sauvage MC, Haim LB, Escartin C (2016) The complex STATes of astrocyte reactivity: how are they controlled by the JAK–STAT3 pathway? Neuroscience 330:205–218

    Article  CAS  PubMed  Google Scholar 

  130. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200. https://doi.org/10.1038/nature17623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kanemaru K, Kubota J, Sekiya H, Hirose K, Okubo Y, Iino M (2013) Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury. Proc Natl Acad Sci U S A 110(28):11612–11617. https://doi.org/10.1073/pnas.1300378110

    Article  PubMed  PubMed Central  Google Scholar 

  132. Robel S, Mori T, Zoubaa S, Schlegel J, Sirko S, Faissner A et al (2009) Conditional deletion of beta1-integrin in astroglia causes partial reactive gliosis. Glia 57(15):1630–1647. https://doi.org/10.1002/glia.20876

    Article  PubMed  Google Scholar 

  133. Vakalopoulos C (2017) Alzheimer’s disease: the alternative serotonergic hypothesis of cognitive decline. J Alzheimers Dis 60(3):859–866. https://doi.org/10.3233/JAD-170364

    Article  PubMed  Google Scholar 

  134. McGeer PL, McGeer EG (2002) Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 8(6):529–538. https://doi.org/10.1080/13550280290100969

    Article  CAS  PubMed  Google Scholar 

  135. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25(5):663–674. https://doi.org/10.1016/j.neurobiolaging.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  136. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT et al (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8(1):67–80. https://doi.org/10.2174/156720511794604543

    Article  PubMed  Google Scholar 

  137. Acosta C, Anderson HD, Anderson CM (2017) Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 95(12):2430–2447. https://doi.org/10.1002/jnr.24075

    Article  CAS  PubMed  Google Scholar 

  138. Vincent AJ, Gasperini R, Foa L, Small DH (2010) Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis 22(3):699–714. https://doi.org/10.3233/JAD-2010-101089

    Article  PubMed  Google Scholar 

  139. Cassano T, Serviddio G, Gaetani S, Romano A, Dipasquale P, Cianci S et al (2012) Glutamatergic alterations and mitochondrial impairment in a murine model of Alzheimer disease. Neurobiol Aging 33(6):1121.e1–1121.12. https://doi.org/10.1016/j.neurobiolaging.2011.09.021

    Article  CAS  Google Scholar 

  140. Masliah E, Alford M, Mallory M, Rockenstein E, Moechars D, Van Leuven F (2000) Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Exp Neurol 163(2):381–387. https://doi.org/10.1006/exnr.2000.7386

    Article  CAS  PubMed  Google Scholar 

  141. Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ et al (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13(5):584–591. https://doi.org/10.1038/nn.2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH et al (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 20(8):886–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cole SL, Vassar R (2007) The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener 2:22. https://doi.org/10.1186/1750-1326-2-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E (2000) Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol 100(6):608–617. https://doi.org/10.1007/s004010000242

    Article  CAS  PubMed  Google Scholar 

  145. Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10(7):719–726. https://doi.org/10.1038/nm1058

    Article  CAS  PubMed  Google Scholar 

  146. Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM (2012) Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Abeta uptake and degradation by astrocytes. J Biol Chem 287(17):13959–13971. https://doi.org/10.1074/jbc.M111.288746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V et al (2009) Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance. Neuron 64(5):632–644. https://doi.org/10.1016/j.neuron.2009.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  148. Weggen S, Diehlmann A, Buslei R, Beyreuther K, Bayer TA (1998) Prominent expression of presenilin-1 in senile plaques and reactive astrocytes in Alzheimer’s disease brain. Neuroreport 9(14):3279–3283

    CAS  PubMed  Google Scholar 

  149. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147)

    Google Scholar 

  150. Garwood C, Faizullabhoy A, Wharton SB, Ince PG, Heath PR, Shaw PJ et al (2013) Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 39(7):788–799. https://doi.org/10.1111/nan.12033

    Article  CAS  PubMed  Google Scholar 

  151. Kobayashi K, Hayashi M, Nakano H, Fukutani Y, Sasaki K, Shimazaki M et al (2002) Apoptosis of astrocytes with enhanced lysosomal activity and oligodendrocytes in white matter lesions in Alzheimer’s disease. Neuropathol Appl Neurobiol 28(3):238–251. https://doi.org/10.1046/j.1365-2990.2002.00390.x

    Article  CAS  PubMed  Google Scholar 

  152. Sjobeck M, Englund E (2003) Glial levels determine severity of white matter disease in Alzheimer’s disease: a neuropathological study of glial changes. Neuropathol Appl Neurobiol 29(2):159–169. https://doi.org/10.1046/j.1365-2990.2003.00456.x

    Article  CAS  PubMed  Google Scholar 

  153. Panmontojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R et al 2010 Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5(1)

    Google Scholar 

  154. Wang HL, Chou AH, Wu AS, Chen SY, Weng YH, Kao YC et al (2011) PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim Biophys Acta 1812(6):674–684. https://doi.org/10.1016/j.bbadis.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  155. Ciesielska A, Joniec I, Kurkowska-Jastrzebska I, Cudna A, Przybylkowski A, Czlonkowska A et al (2009) The impact of age and gender on the striatal astrocytes activation in murine model of Parkinson’s disease. Inflamm Res 58(11):747–753. https://doi.org/10.1007/s00011-009-0026-6

    Article  CAS  PubMed  Google Scholar 

  156. Sriram K, Benkovic SA, Hebert MA, Miller DB, O’Callaghan JP (2004) Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo? J Biol Chem 279(19):19936–19947. https://doi.org/10.1074/jbc.M309304200

    Article  CAS  PubMed  Google Scholar 

  157. Song YJ, Halliday GM, Holton JL, Lashley T, O’Sullivan SS, McCann H et al (2009) Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J Neuropathol Exp Neurol 68(10):1073–1083. https://doi.org/10.1097/NEN.0b013e3181b66f1b

    Article  CAS  PubMed  Google Scholar 

  158. Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26(1):6–17. https://doi.org/10.1002/mds.23455

    Article  PubMed  Google Scholar 

  159. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272. https://doi.org/10.1074/jbc.M109.081125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Barcia C, Ros CM, Annese V, Gomez A, Ros-Bernal F, Aguado-Llera D et al (2012) IFN-gamma signaling, with the synergistic contribution of TNF-alpha, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 3:e379. https://doi.org/10.1038/cddis.2012.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. L’Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC et al (2011) A Wnt1 regulated Frizzled-1/β-cateninsignaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 6(1):49. https://doi.org/10.1186/1750-1326-6-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR et al (2015) Huntington disease. Nat Rev Dis Primers 1:15005. https://doi.org/10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  163. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228. https://doi.org/10.1016/S0140-6736(07)60111-1

    Article  CAS  PubMed  Google Scholar 

  164. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G et al (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19(15):3053–3067. https://doi.org/10.1093/hmg/ddq212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577. https://doi.org/10.1097/00005072-198511000-00003

    Article  CAS  PubMed  Google Scholar 

  166. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125(Pt 8):1908–1922. https://doi.org/10.1093/brain/awf180

    Article  CAS  PubMed  Google Scholar 

  167. Hassel B, Tessler S, Faull RLM, Emson PC (2008) Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res 33(2):232–237

    Article  CAS  PubMed  Google Scholar 

  168. Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L et al (2001) Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 8(5):807–821. https://doi.org/10.1006/nbdi.2001.0430

    Article  CAS  PubMed  Google Scholar 

  169. Lee W, Reyes RC, Gottipati MK, Lewis K, Lesort M, Parpura V et al (2013) Enhanced Ca(2+)-dependent glutamate release from astrocytes of the BACHD Huntington’s disease mouse model. Neurobiol Dis 58:192–199. https://doi.org/10.1016/j.nbd.2013.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Khakh BS, Sofroniew MV (2014) Astrocytes and Huntington’s disease. ACS Chem Neurosci 5(7):494–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD et al (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703. https://doi.org/10.1038/nn.3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hsiao HY, Chen YC, Chen HM, Tu PH, Chern Y (2013) A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease. Hum Mol Genet 22(9):1826–1842. https://doi.org/10.1093/hmg/ddt036

    Article  CAS  PubMed  Google Scholar 

  173. Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM et al (2015) Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol 78(2):178–192. https://doi.org/10.1002/ana.24428

    Article  CAS  PubMed  Google Scholar 

  174. Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S et al (2010) Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 285(14):10653–10661. https://doi.org/10.1074/jbc.M109.083287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A 106(52):22480–22485. https://doi.org/10.1073/pnas.0911503106

    Article  PubMed  PubMed Central  Google Scholar 

  176. Juopperi TA, Kim WR, Chiang CH, Yu H, Margolis RL, Ross CA et al (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5:17. https://doi.org/10.1186/1756-6606-5-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955. https://doi.org/10.1016/S0140-6736(10)61156-7

    Article  CAS  PubMed  Google Scholar 

  178. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A et al (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29(9):824–828. https://doi.org/10.1038/nbt.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622. https://doi.org/10.1038/nn1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yamanaka K, Chun SJ, Boillee S, Fujimoritonou N, Yamashita H, Gutmann DH et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11(3):251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392. https://doi.org/10.1126/science.1123511

    Article  CAS  PubMed  Google Scholar 

  182. Wang L, Sharma K, Grisotti G, Roos RP (2009) The effect of mutant SOD1 dismutase activity on non-cell autonomous degeneration in familial amyotrophic lateral sclerosis. Neurobiol Dis 35(2):234–240. https://doi.org/10.1016/j.nbd.2009.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16(5):571–579. https://doi.org/10.1038/nn.3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ferrer I (2017) Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 27(5):645–674. https://doi.org/10.1111/bpa.12538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J et al (2011) Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134(Pt 9):2627–2641. https://doi.org/10.1093/brain/awr193

    Article  PubMed  PubMed Central  Google Scholar 

  186. Papadeas ST, Kraig SE, O’Banion C, Lepore AC, Maragakis NJ (2011) Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc Natl Acad Sci U S A 108(43):17803–17808. https://doi.org/10.1073/pnas.1103141108

    Article  PubMed  PubMed Central  Google Scholar 

  187. Pardo AC, Wong V, Benson LM, Dykes M, Tanaka K, Rothstein JD et al (2006) Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Exp Neurol 201(1):120–130. https://doi.org/10.1016/j.expneurol.2006.03.028

    Article  CAS  PubMed  Google Scholar 

  188. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689. https://doi.org/10.1038/ncpneuro0355

    Article  CAS  PubMed  Google Scholar 

  189. Meyer K, Ferraiuolo L, Miranda CJ, Likhite S, McElroy S, Renusch S et al (2014) Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci U S A 111(2):829–832. https://doi.org/10.1073/pnas.1314085111

    Article  CAS  PubMed  Google Scholar 

  190. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686. https://doi.org/10.1016/s0896-6273(00)80086-0

    Article  CAS  PubMed  Google Scholar 

  191. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38(1):73–84. https://doi.org/10.1002/ana.410380114

    Article  CAS  PubMed  Google Scholar 

  192. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77. https://doi.org/10.1038/nature03180

    Article  CAS  PubMed  Google Scholar 

  193. Phatnani H, Guarnieri P, Friedman BA, Carrasco MA, Muratet M, Okeeffe S et al (2013) Intricate interplay between astrocytes and motor neurons in ALS. Proc Natl Acad Sci U S A 110(8):201222361

    Article  Google Scholar 

  194. Hashioka S, Klegeris A, Schwab C, McGeer PL (2009) Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiol Aging 30(12):1924–1935. https://doi.org/10.1016/j.neurobiolaging.2008.02.019

    Article  CAS  PubMed  Google Scholar 

  195. Hashioka S, Klegeris A, Qing H, McGeer PL (2011) STAT3 inhibitors attenuate interferon-gamma-induced neurotoxicity and inflammatory molecule production by human astrocytes. Neurobiol Dis 41(2):299–307. https://doi.org/10.1016/j.nbd.2010.09.018

    Article  CAS  PubMed  Google Scholar 

  196. Shibata N, Yamamoto T, Hiroi A, Omi Y, Kato Y, Kobayashi M (2010) Activation of STAT3 and inhibitory effects of pioglitazone on STAT3 activity in a mouse model of SOD1-mutated amyotrophic lateral sclerosis. Neuropathology 30(4):353–360. https://doi.org/10.1111/j.1440-1789.2009.01078.x

    Article  PubMed  Google Scholar 

  197. Martorana F, Brambilla L, Valori CF, Bergamaschi C, Roncoroni C, Aronica E et al (2012) The BH4 domain of Bcl-X L rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. Hum Mol Genet 21(4):826–840

    Article  CAS  PubMed  Google Scholar 

  198. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902. https://doi.org/10.1083/jcb.85.3.890

    Article  CAS  PubMed  Google Scholar 

  199. Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung WS, Zhou L et al (2011) Development of a method for the purification and culture of rodent astrocytes. Neuron 71(5):799–811. https://doi.org/10.1016/j.neuron.2011.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Haas R, Werner J, Fliedner TM (1970) Cytokinetics of neonatal brain cell development in rats as studied by the ‘complete 3H-thymidine labelling’ method. J Anat 107:421–437

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Skoff RP, Knapp PE (1991) Division of astroblasts and oligodendroblasts in postnatal rodent brain: evidence for separate astrocyte and oligodendrocyte lineages. Glia 4(2):165–174. https://doi.org/10.1002/glia.440040208

    Article  CAS  PubMed  Google Scholar 

  202. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433

    Article  CAS  PubMed  Google Scholar 

  203. Eroglu Ç, Allen NJ, Susman MW, O’Rourke NA, Park CY, Özkan E et al (2009) Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139(2):380–392. https://doi.org/10.1016/j.cell.2009.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ et al (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486(7403):410–414. https://doi.org/10.1038/nature11059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Puschmann TB, Zanden C, Lebkuechner I, Philippot C, de Pablo Y, Liu J et al (2014) HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins. J Neurochem 128(6):878–889. https://doi.org/10.1111/jnc.12519

    Article  CAS  PubMed  Google Scholar 

  206. Puschmann TB, de Pablo Y, Zanden C, Liu J, Pekny M (2014) A novel method for three-dimensional culture of central nervous system neurons. Tissue Eng Part C Methods 20(6):485–492. https://doi.org/10.1089/ten.TEC.2013.0445

    Article  CAS  PubMed  Google Scholar 

  207. Puschmann TB, Zanden C, De Pablo Y, Kirchhoff F, Pekna M, Liu J et al (2013) Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia 61(3):432–440. https://doi.org/10.1002/glia.22446

    Article  PubMed  Google Scholar 

  208. Chiu C, Yao N, Guo JH, Shen C, Lee H, Chiu Y et al (2017) Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage. Oncotarget 8(55):94850–94861

    Article  PubMed  PubMed Central  Google Scholar 

  209. Wilkinson DJ (2009) Stochastic modelling for quantitative description of heterogeneous biological systems. Nat Rev Genet 10(2):122–133. https://doi.org/10.1038/nrg2509

    Article  CAS  PubMed  Google Scholar 

  210. Sandberg R (2014) Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods 11(1):22–24. https://doi.org/10.1038/nmeth.2764

    Article  CAS  PubMed  Google Scholar 

  211. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  212. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142. https://doi.org/10.1126/science.aaa1934

    Article  CAS  PubMed  Google Scholar 

  213. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM et al (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112(23):7285–7290. https://doi.org/10.1073/pnas.1507125112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Saji H (2017) In vivo molecular imaging. Biol Pharm Bull 40(10):1605–1615. https://doi.org/10.1248/bpb.b17-00505

    Article  CAS  PubMed  Google Scholar 

  215. Anderson CJ, Lewis JS (2017) Current status and future challenges for molecular imaging. Philos Trans A Math Phys Eng Sci 375:2107. https://doi.org/10.1098/rsta.2017.0023

    Article  CAS  Google Scholar 

  216. Strafella AP, Bohnen NI, Perlmutter JS, Eidelberg D, Pavese N, Van Eimeren T et al (2017) Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers. Mov Disord 32(2):181–192. https://doi.org/10.1002/mds.26907

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, J., Qin, S. (2022). Activation of Astrocytes in Neurodegenerative Diseases . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics