Skip to main content

In Silico Analysis of Therapeutic Antibody Aggregation and the Influence of Glycosylation

  • Protocol
  • First Online:
Glycosylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2370))

Abstract

The aggregation of therapeutic antibodies is a major issue for the pharmaceutical industry leading to loss of drug quality, increased dosage, and unwanted immune responses such as the production of anti-drug antibodies (ADA). As aggregation can occur at various stages of development and storage, much work has been performed to reduce or eliminate it. In this report we analyzed four antibodies available in the PDB (1IGT, 1IGY, 1HZH, and 5DK3) using the online software UCSF Chimera to study the structural features of the proteins and the associated N-linked glycans in the CH2 domains of the Fc region. To study antibody aggregation in silico we used the online software TANGO and AGGRESCAN to identify aggregation prone regions (APR) in the antibodies and the influence of the Fc glycans on hydrophobic and aromatic residues present in the APRs. In the 3D structures of 1IGT and 1IGY the glycan chains are in close enough proximity to influence and protect these hydrophobic regions. However, in the 3D structures of 1HZH and 5DK3 the glycans do not appear to influence the likely APRs of the antibodies. Therefore, in these structures we modified the Fc glycan regions by adjusting the glycosylated asparagine side chains and glycosidic bonds. We successfully adjusted the glycan chains of 1HZH and 5DK3 and reduced the distance between them and the APRs to show potential influence on aggregation. However, similar to 5DK3, the influence of glycosylation on the APRs of the antibody was limited due to the size of the glycans present in the 3D structure. This report is based on in silico studies to show how antibody glycans can influence aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Intl J Oncol 54(2):407–419

    CAS  Google Scholar 

  2. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. British J Pharmacol 157(2):220–233

    Article  CAS  Google Scholar 

  3. Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, Prang NS (2006) High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Molec Immunol 43(8):1183–1193

    Article  CAS  Google Scholar 

  4. Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS (2016) Antibody aggregation: insights from sequence and structure. Antibodies 5(3):19–41

    Article  Google Scholar 

  5. Remmele RL Jr, Bee JS, Phillips JJ, Mo WD, Higazi DR, Zhang J, Lindo V, Kippen AD (2015) Characterization of monoclonal antibody aggregates and emerging technologies. In: State-of-the-art and emerging technologies for therapeutic monoclonal antibody characterization volume 3. Defining the next generation of analytical and biophysical techniques. ACS Publications, Washington, D.C., pp 113–158

    Chapter  Google Scholar 

  6. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325(5):979–989

    Article  CAS  Google Scholar 

  7. Jennewein MF, Alter G (2017) The immunoregulatory roles of antibody glycosylation. Trends Immunol 38(5):358–372

    Article  CAS  Google Scholar 

  8. Goh JB, Ng SK (2018) Impact of host cell line choice on glycan profile. Critical Rev Biotechnol 38(6):851–867

    Article  CAS  Google Scholar 

  9. Mimura Y, Katoh T, Saldova R, O’Flaherty R, Izumi T, Mimura-Kimura Y, Utsunomiya T, Mizukami Y, Yamamoto K, Matsumoto T (2018) Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell 9(1):47–62

    Article  CAS  Google Scholar 

  10. Zhang P, Woen S, Wang T, Liau B, Zhao S, Chen C, Yang Y, Song Z, Wormald MR, Yu C (2016) Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discov Today 21(5):740–765

    Article  CAS  Google Scholar 

  11. Higel F, Seidl A, Sörgel F, Friess W (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm 100:94–100

    Article  CAS  Google Scholar 

  12. Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 3(6):568–576

    Article  Google Scholar 

  13. Schaefer JV, Plückthun A (2012) Engineering aggregation resistance in IgG by two independent mechanisms: lessons from comparison of Pichia pastoris and mammalian cell expression. J Mol Biol 417(4):309–335

    Article  CAS  Google Scholar 

  14. Lu D, Yang C, Liu Z (2012) How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation. J Phys Chem B 116(1):390–400

    Article  CAS  Google Scholar 

  15. Yang C, Gao X, Gong R (2018) Engineering of fc fragments with optimized physicochemical properties implying improvement of clinical potentials for fc-based therapeutics. Front Immunol 8:1860–1873

    Article  Google Scholar 

  16. Lee CC, Perchiacca JM, Tessier PM (2013) Toward aggregation-resistant antibodies by design. Trends Biotechnol 31(11):612–620

    Article  CAS  Google Scholar 

  17. Berman HM, Wesbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  18. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22(10):1302–1306

    Article  CAS  Google Scholar 

  19. Borrok MJ, Wu Y, Beyaz N, Yu XQ, Oganesyan V, Dall'Acqua WF, Tsui P (2015) pH-dependent binding engineering reveals an FcRn affinity threshold that governs IgG recycling. J Biol Chem 290(7):4282–4290

    Article  CAS  Google Scholar 

  20. Choe W, Durgannavar TA, Chung SJ (2016) Fc-binding ligands of immunoglobulin G: an overview of high affinity proteins and peptides. Materials 9(12):994–1010

    Article  Google Scholar 

  21. Kamyshny A, Lagerge S, Partyka S, Relkin P, Magdassi S (2001) Adsorption of native and hydrophobized human IgG onto silica: isotherms, calorimetry, and biological activity. Langmuir 17(26):8242–8248

    Article  CAS  Google Scholar 

  22. Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of" hot spots" of aggregation in polypeptides. BMC Bioinformatics 8(1):65–81

    Article  Google Scholar 

  23. Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43(W1):W306–W313

    Article  CAS  Google Scholar 

  24. Wang X, Das TK, Singh SK, Kumar S (2009) Potential aggregation prone regions in biotherapeutics: a survey of commercial monoclonal antibodies. MAbs 1(3):254–267

    Article  Google Scholar 

  25. Hayashi Y, Yasugi F, Arai M (2015) Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase. PLoS One 10(4):e0122217

    Article  Google Scholar 

  26. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  27. Wang X, Kumar S, Buck PM, Singh SK (2013) Impact of deglycosylation and thermal stress on conformational stability of a full length murine IgG2a monoclonal antibody: observations from molecular dynamics simulations. Proteins 81(3):443–460

    Article  CAS  Google Scholar 

  28. Voynov V, Chennamsetty N, Kayser V, Helk B, Forrer K, Zhang H, Fritsch C, Heine H, Trout BL (2009) Dynamic fluctuations of protein-carbohydrate interactions promote aggregation. PLoS One 4(12):e8425

    Article  Google Scholar 

  29. Kayser V, Chennamsetty N, Voynov V, Forrer K, Helk B, Trout BL (2011) Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol J 6(1):38–44

    Article  CAS  Google Scholar 

  30. Barb AW, Prestegard JH (2011) NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol 7(3):147–153

    Article  CAS  Google Scholar 

  31. Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX (2017) Modulating IgG effector function by fc glycan engineering. Proc Natl Acad Sci U S A 114(13):3485–3490

    Article  CAS  Google Scholar 

  32. Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jerrard M. Hayes or K. H. Mok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jeon, H., Hayes, J.M., Mok, K.H. (2022). In Silico Analysis of Therapeutic Antibody Aggregation and the Influence of Glycosylation. In: Davey, G.P. (eds) Glycosylation. Methods in Molecular Biology, vol 2370. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1685-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1685-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1684-0

  • Online ISBN: 978-1-0716-1685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics