Skip to main content

Monitoring the Sialome on Human Immune Cells

  • Protocol
  • First Online:
Glycosylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2370))

Abstract

The sialome or display of sialic acids on the surface of human immune cells can vary according to immune response and activation state. Here, human peripheral blood mononuclear cells (PBMCs) were isolated and activated with anti-CD3 antibody and the cell surface sialome was quantified using a combination of click chemistry, confocal microscopy and flow cytometry techniques. Carbohydrate click chemistry was used to detect and measure the incorporation of an azido-m65odified sialic acid precursor molecule, N-acetylmannosamine (ManNaz) sugar into the PBMC surface sialome. Incorporation of sialic acid into the PBMC glycocalyx was visualized using copper-catalyzed click conjugation of Alexa 488 alkyne and confocal microscopy and further quantified using flow cytometry. The use of these methods indicate that regulating the sialome content on the surface of activated immune cells may be monitored during immunomodulatory responses and anti-inflammatory therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boligan KF et al (2015) Cancer intelligence acquired (CIA): tumor glycosylation and sialylation codes dismantling antitumor defense. Cell Mol Life Sci 72(7):1231–1248

    Article  CAS  Google Scholar 

  2. Zhuo Y, Bellis SL (2011) Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 286(8):5935–5941

    Article  CAS  Google Scholar 

  3. Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16(1):1R–27R

    Article  CAS  Google Scholar 

  4. Xiao H et al (2016) Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci U S A 113(37):10304–10309

    Article  CAS  Google Scholar 

  5. Pfeifle R et al (2017) Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol 18:104–113

    Article  CAS  Google Scholar 

  6. Ohmi Y et al (2016) Sialylation converts arthritogenic IgG into inhibitors of collagen-induced arthritis. Nat Commun 7:11205

    Article  CAS  Google Scholar 

  7. Toscano MA et al (2007) Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8(8):825–834

    Article  CAS  Google Scholar 

  8. Clark MC, Baum LG (2012) T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival. Ann N Y Acad Sci 1253:58–67

    Article  CAS  Google Scholar 

  9. Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 11(4):535–546

    Article  CAS  Google Scholar 

  10. Baskin JM et al (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 104(43):16793–16797

    Article  CAS  Google Scholar 

  11. Zaro BW, Bateman LA, Pratt MR (2011) Robust in-gel fluorescence detection of mucin-type O-linked glycosylation. Bioorg Med Chem Lett 21(17):5062–5066

    Article  CAS  Google Scholar 

  12. Laughlin ST, Bertozzi CR (2007) Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2(11):2930–2944

    Article  CAS  Google Scholar 

  13. Saxon E et al (2002) Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. J Am Chem Soc 124(50):14893–14902

    Article  CAS  Google Scholar 

  14. Marshall A, Lichtman TJK, Seligsohn U, Kaushansky K, Prchal JT (2011) Williams hematology, 8th edn. McGraw-Hill, Pennsylvania

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin P. Davey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

O’Farrell, L.K., Fraser, A.D., Davey, G.P. (2022). Monitoring the Sialome on Human Immune Cells. In: Davey, G.P. (eds) Glycosylation. Methods in Molecular Biology, vol 2370. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1685-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1685-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1684-0

  • Online ISBN: 978-1-0716-1685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics