Skip to main content

Identification of Circular RNAs by Multiple Displacement Amplification and Their Involvement in Plant Development

  • Protocol
  • First Online:
Plant Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2362))

Abstract

With the innovative knowledge and bioinformatics tools in the identification and characterization of noncoding RNAs, circular RNA (circRNA) is added as a new member to the noncoding RNAs family. CircRNA enrichment by rRNA depletion/RNase R or poly-A removal/RNase R treatment followed by NGS analysis is the most frequently adopted method for circular RNA identification and characterization. In this chapter, we describe the multiple displacement amplification (MDA) as a convenient method to augment the identification of even the abysmally expressed circular RNAs at low sequencing depth. Total RNA, extracted at three different developmental stages of rice, is subjected to RiboMinus and RNase R treatment to deplete the linear RNAs. The enriched circular RNAs are reverse transcribed with random hexamers. The resulting cDNA is subjected to phi29 DNA polymerase amplification using exo-resistant random pentamers to yield high molecular weight dsDNA product, followed by Illumina sequencing at ten million paired end reads per sample. The sequence analysis yielded a promising number of circRNAs with the appreciable inclusion of differentially regulated and minimally expressed circRNAs at a comparatively reduced cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu T, Cui L, Zhou Y et al (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21(12):2076–2087. https://doi.org/10.1261/rna.052282.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Darbani B, Noeparvar S, Borg S (2016) Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Front Plant Sci 7:776. https://doi.org/10.3389/fpls.2016.00776

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan J, Zhou Z, Niu Y et al (2017) Identification and functional characterization of tomato CircRNAs derived from genes involved in fruit pigment accumulation. Sci Rep 7(1):8594. https://doi.org/10.1038/s41598-017-08806-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Yang M, Wei S et al (2017) Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci 7:2024. https://doi.org/10.3389/fpls.2016.02024

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Wang Q, Gao L et al (2017) Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato. Physiol Plant 161(3):311–321. https://doi.org/10.1111/ppl.12600

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Lin J, Wang H et al (2018) Identification and characterization of circRNAs in Pyrus betulifolia Bunge under drought stress. PLoS One 13(7):e0200692. https://doi.org/10.1371/journal.pone.0200692

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhu Y, Jia J, Yang L et al (2019) Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol 19:164. https://doi.org/10.1186/s12870-019-1712-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66. https://doi.org/10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  9. Conn VM, Hugouvieux V, Nayak A et al (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053. https://doi.org/10.1038/nplants.2017.53

    Article  CAS  PubMed  Google Scholar 

  10. Cheng J, Zhang Y, Li Z et al (2018) A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci China Life Sci 61:204–213. https://doi.org/10.1007/s11427-017-9182-3

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Xiong Z, Li Q et al (2019) Circular RNA profiling of the rice photo-thermosensitive genic male sterile line Wuxiang S reveals circRNA involved in the fertility transition. BMC Plant Biol 19:340. https://doi.org/10.1186/s12870-019-1944-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye CY, Chen L, Liu C et al (2015) Widespread noncoding circular RNAs in plants. New Phytol 208:88–95. https://doi.org/10.1111/nph.13585

    Article  CAS  PubMed  Google Scholar 

  13. Jeck WR, Sharpless NE (2014) Detecting and characterising circular RNAs. Nat Biotechnol 32:453–461. https://doi.org/10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guria A, Kumar KVV, Srikakulum N et al (2019) Circular RNA profiling by Illumina sequencing via template-dependent multiple displacement amplification. Biomed Res Int 2019:2756516. https://doi.org/10.1155/2019/2756516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vijayachandra K, Palanichelvam K, Veluthambi K (1995) Rice scutellum induces Agrobacterium tumefaciens vir genes and T-strand generation. Plant Mol Biol 29:125–133. https://doi.org/10.1007/BF00019124

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Ren Y, Lu Y et al (2017) Template-dependent multiple displacement amplification for profiling human circulating RNA. BioTechniques 63(1):21–27. https://doi.org/10.2144/000114566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao Y, Zhang J, Zhao F (2018) Circular RNA identification based on multiple seed matching. Brief Bioinform 19(5):803–810. https://doi.org/10.1093/bib/bbx014

    Article  CAS  PubMed  Google Scholar 

  18. Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147. https://doi.org/10.1016/j.cell.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  19. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4. https://doi.org/10.1186/s13059-014-0571-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen L, Yu Y, Zhang X et al (2016) PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics 32:3528–3529. https://doi.org/10.1093/bioinformatics/btw496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng J, Metge F, Dieterich C (2016) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32:1094–1096. https://doi.org/10.1093/bioinformatics/btv656

    Article  CAS  PubMed  Google Scholar 

  22. https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/. Accessed 29 July 2020

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  24. Bolser D, Staines DM, Pritchard E et al (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. In: Edwards D (ed) Plant bioinformatics. Methods in molecular biology, vol 1374. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3167-5_6

    Chapter  Google Scholar 

  25. Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46(W1):W49–W54. https://doi.org/10.1093/nar/gky316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  PubMed  Google Scholar 

  27. Varkonyi-Gasic E, Wu R, Wood M et al (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12. https://doi.org/10.1186/1746-4811-3-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kramer MF (2011) Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol . Chapter 15:Unit15.10-15.10. https://doi.org/10.1002/0471142727.mb1510s95

  29. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. https://doi.org/10.1093/nar/gni178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marcial-Quino J, Gómez-Manzo S, Fierro F et al (2016) Stem-loop RT-qPCR as an efficient tool for the detection and quantification of small RNAs in Giardia lamblia. Genes 7(12):131. https://doi.org/10.3390/genes7120131

    Article  CAS  PubMed Central  Google Scholar 

  31. Chen J, Lozach J, Garcia EW et al (2008) Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res 36(14):e87. https://doi.org/10.1093/nar/gkn387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang LH, Wang SL, Tang LL et al (2014) Universal stem-loop primer method for screening and quantification of microRNA. PLoS One 9(12):e115293. https://doi.org/10.1371/journal.pone.0115293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the fund granted from the Science and Engineering Research Board (SERB) (Ref. No. EEQ/2018/000067, SB/EMEQ-070/2013 to GP and EMR/2016/000945 to SN). PS is a recipient of Lady Tata Memorial Trust (LTMT) Junior Research Scholarship (2019-2020). Financial assistance was provided to AG by Department of Biotechnology (DBT) (Ref. No. BT/PR23641/BPA/118/309/2017, BT/PR2061/AGR/36/707/2011) and grants from BT/PR6466/COE/34/16/2012. The equipment grants from Department of Science and Technology—Promotion of University Research and Scientific Excellence (DST-PURSE), University Grant Commission—Special Assistance Programme (UGC-SAP) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sankar Natesan or Gopal Pandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guria, A., Sharma, P., Natesan, S., Pandi, G. (2021). Identification of Circular RNAs by Multiple Displacement Amplification and Their Involvement in Plant Development. In: Vaschetto, L.M. (eds) Plant Circular RNAs. Methods in Molecular Biology, vol 2362. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1645-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1645-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1644-4

  • Online ISBN: 978-1-0716-1645-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics