Skip to main content

Measuring Chromatin Accessibility: ATAC-Seq

  • Protocol
  • First Online:
Enhancers and Promoters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2351))

Abstract

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-Seq) is a method to investigate the accessibility of chromatin in a genome-wide fashion. In this chapter, we provide a brief history of the chromatin accessibility field followed by a detailed protocol to perform ATAC-Seq assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornberg RD, Thomas JO (1974) Chromatin structure; oligomers of the histones. Science 184(4139):865–868. https://doi.org/10.1126/science.184.4139.865

    Article  CAS  PubMed  Google Scholar 

  2. Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12(8):554–564. https://doi.org/10.1038/nrg3017

    Article  CAS  PubMed  Google Scholar 

  3. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500. https://doi.org/10.1038/nrg.2016.59

    Article  CAS  PubMed  Google Scholar 

  4. Dann GP, Liszczak GP, Bagert JD, Muller MM, Nguyen UTT, Wojcik F, Brown ZZ, Bos J, Panchenko T, Pihl R, Pollock SB, Diehl KL, Allis CD, Muir TW (2017) ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548(7669):607–611. https://doi.org/10.1038/nature23671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82. https://doi.org/10.1038/nature11232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 20(4):207–220. https://doi.org/10.1038/s41576-018-0089-8

    Article  CAS  PubMed  Google Scholar 

  7. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hewish DR, Burgoyne LA (1973) Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun 52(2):504–510. https://doi.org/10.1016/0006-291x(73)90740-7

    Article  CAS  PubMed  Google Scholar 

  9. Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193(4256):848–856. https://doi.org/10.1126/science.948749

    Article  CAS  PubMed  Google Scholar 

  10. Crawford GE, Davis S, Scacheri PC, Renaud G, Halawi MJ, Erdos MR, Green R, Meltzer PS, Wolfsberg TG, Collins FS (2006) DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat Methods 3(7):503–509. https://doi.org/10.1038/nmeth888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ, Kingston RE, Tolstorukov MY (2016) MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 7:11485. https://doi.org/10.1038/ncomms11485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17(6):877–885. https://doi.org/10.1101/gr.5533506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Miao N, Sun T (2019) Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas 156:29. https://doi.org/10.1186/s41065-019-0105-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490. https://doi.org/10.1038/nature14590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B, Kathiria A, Cho SW, Mumbach MR, Carter AC, Kasowski M, Orloff LA, Risca VI, Kundaje A, Khavari PA, Montine TJ, Greenleaf WJ, Chang HY (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14(10):959–962. https://doi.org/10.1038/nmeth.4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ludwig et al (2019) Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176:1325–1339.e22. https://doi.org/10.1016/j.cell.2019.01.022

Download references

Acknowledgments

We would like to thank the members of the Tiwari lab for their cooperation and critical feedback. Importantly, we are very much thankful to Dr. Benedetto Daniele Giaimo for his critical suggestions in shaping this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay K. Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sahu, S.K., Basu, A., Tiwari, V.K. (2021). Measuring Chromatin Accessibility: ATAC-Seq . In: Borggrefe, T., Giaimo, B.D. (eds) Enhancers and Promoters. Methods in Molecular Biology, vol 2351. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1597-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1597-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1596-6

  • Online ISBN: 978-1-0716-1597-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics