Skip to main content

Multiplex Imaging of Rho GTPase Activities in Living Cells

  • Protocol
  • First Online:
Multiplexed Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2350))

Abstract

Förster resonance energy transfer (FRET) biosensors are popular and useful for directly observing cellular signaling pathways in living cells. Until recently, multiplex imaging of genetically encoded FRET biosensors to simultaneously monitor several protein activities in one cell was limited due to a lack of spectrally compatible FRET pair of fluorescent proteins. With the recent development of miRFP series of near-infrared (NIR) fluorescent proteins, we are now able to extend the spectrum of FRET biosensors beyond blue-green-yellow into NIR. These new NIR FRET biosensors enable direct multiplex imaging together with commonly used cyan-yellow FRET biosensors. We describe herein a method to produce cell lines harboring two compatible FRET biosensors. We will then discuss how to directly multiplex-image these FRET biosensors in living cells. The approaches described herein are generally applicable to any combinations of genetically encoded, ratiometric FRET biosensors utilizing the cyan-yellow and NIR fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L (2018) Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat Chem Biol 14(6):591–600. https://doi.org/10.1038/s41589-018-0044-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shcherbakova DM, Baloban M, Emelyanov AV, Brenowitz M, Guo P, Verkhusha VV (2016) Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat Commun 7:12405. https://doi.org/10.1038/ncomms12405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440(7087):1069–1072

    Article  CAS  Google Scholar 

  4. Hodgson L, Spiering D, Sabouri-Ghomi M, Dagliyan O, DerMardirossian C, Danuser G, Hahn KM (2016) FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions. Nat Chem Biol 12(10):802–809. https://doi.org/10.1038/nchembio.2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Longo PA, Kavran JM, Kim MS, Leahy DJ (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–240. https://doi.org/10.1016/B978-0-12-418687-3.00018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hodgson L, Pertz O, Hahn KM (2008) Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors. Methods Cell Biol 85:63–81

    Article  CAS  Google Scholar 

  7. Spiering D, Bravo-Cordero JJ, Moshfegh Y, Miskolci V, Hodgson L (2013) Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol 114:593–609. https://doi.org/10.1016/B978-0-12-407761-4.00025-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bravo-Cordero JJ, Moshfegh Y, Condeelis J, Hodgson L (2013) Live cell imaging of RhoGTPase biosensors in tumor cells. Methods Mol Biol 1046:359–370. https://doi.org/10.1007/978-1-62703-538-5_22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spiering D, Hodgson L (2012) Multiplex imaging of rho family GTPase activities in living cells. Methods Mol Biol 827:215–234. https://doi.org/10.1007/978-1-61779-442-1_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donnelly SK, Cabrera R, Mao SPH, Christin JR, Wu B, Guo W, Bravo-Cordero JJ, Condeelis JS, Segall JE, Hodgson L (2017) Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol 216(12):4331–4349. https://doi.org/10.1083/jcb.201704048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miskolci V, Wu B, Moshfegh Y, Cox D, Hodgson L (2016) Optical tools to study the isoform-specific roles of small GTPases in immune cells. J Immunol 196(8):3479–3493. https://doi.org/10.4049/jimmunol.1501655

    Article  CAS  PubMed  Google Scholar 

  12. Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L (2014) A trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 16(6):574–586. https://doi.org/10.1038/ncb2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9(5):e96469. https://doi.org/10.1371/journal.pone.0096469

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zawistowski J, Sabouri-Ghomi M, Danuser G, Hahn K, Hodgson L (2013) A RhoC biosensor reveals differences in the activation kinetics of RhoA and RhoC in migrating cells. Plos One 8(11):e79877

    Article  CAS  Google Scholar 

  15. Hodgson L, Shen F, Hahn K (2010) Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol Chapter 14:Unit 14.11.1–Unit 14.1126

    Google Scholar 

  16. Shen F, Hodgson L, Rabinovich A, Pertz O, Hahn K, Price JH (2006) Functional proteometrics for cell migration. Cytometry A 69(7):563–572. https://doi.org/10.1002/cyto.a.20283

    Article  CAS  PubMed  Google Scholar 

  17. Hodgson L, Nalbant P, Shen F, Hahn K (2006) Imaging and photobleach correction of Mero-CBD, sensor of endogenous Cdc42 activation. Methods Enzymol 406:140–156

    Article  CAS  Google Scholar 

  18. Kostenbader KD Jr, Cliver DO (1983) Membrane filter evaluations using poliovirus. J Virol Methods 7(5–6):253–257

    Article  Google Scholar 

  19. Wallis C, Henderson M, Melnick JL (1972) Enterovirus concentration on cellulose membranes. Appl Microbiol 23(3):476–480

    Article  CAS  Google Scholar 

  20. Beer C, Meyer A, Muller K, Wirth M (2003) The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology 308(1):137–146

    Article  CAS  Google Scholar 

  21. Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK, Yoon YJ, Cox D, Singer RH, Hodgson L (2015) Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev 29(8):876–886. https://doi.org/10.1101/gad.259358.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen F, Hodgson L, Hahn K (2006) Digital autofocus methods for automated microscopy. Methods Enzymol 414:620–632

    Article  CAS  Google Scholar 

  23. Shen F, Hodgson L, Price JH, Hahn KM (2008) Digital differential interference contrast autofocus for high-resolution oil-immersion microscopy. Cytometry A 73(7):658–666

    Article  Google Scholar 

  24. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  25. Del Pozo MA, Kiosses WB, Alderson NB, Meller N, Hahn KM, Schwartz MA (2002) Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol 4(3):232–239

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant GM136226 to LH. LH is an Irma T. Hirschl Career Scientist. RMB was supported by the Mamaroneck High School Original Science Research Program. MGW was supported by the Einstein-Montefiore Summer High School Research Program of the Albert Einstein College of Medicine, Graduate Division of Biomedical Sciences. NIR-Rac1 FRET biosensor was originally engineered, in part, by contributions from Tsipora M. Huisman, MD, and Natasha Cox Cammer [1]. Biosensor cDNA constructs and Matlab codes to enable processing of FRET data are available upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Hodgson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhalla, R.M., Hülsemann, M., Verkhusha, P.V., Walker, M.G., Shcherbakova, D.M., Hodgson, L. (2021). Multiplex Imaging of Rho GTPase Activities in Living Cells. In: Zamir, E. (eds) Multiplexed Imaging. Methods in Molecular Biology, vol 2350. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1593-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1593-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1592-8

  • Online ISBN: 978-1-0716-1593-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics