Skip to main content

Experimental Validation of the Noncoding Potential for lncRNAs

  • Protocol
  • First Online:
Long Non-Coding RNAs in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2348))

  • 1897 Accesses

Abstract

In recent years, long noncoding RNAs (lncRNAs) have been increasingly recognized as critical regulators of a broad spectrum of cellular processes. Recent advancements in proteomic technologies have uncovered that an abundance of noncoding genes, including lncRNAs, have been misannotated and in reality encode proteins. This revelation underscores the need to accurately determine the coding potential of lncRNAs prior to assessment of their functional mechanisms. Here, we detail numerous experimental techniques useful in the determination of lncRNA coding potential. Several of these methods are doubly useful in that they may also be employed in studying the function of a lncRNA, be it via an RNA, protein, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yao RW, Wang Y, Chen LL (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21(5):542–551. https://doi.org/10.1038/s41556-019-0311-8

    Article  CAS  PubMed  Google Scholar 

  3. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361. https://doi.org/10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  4. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463. https://doi.org/10.1016/j.ccell.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147(4):789–802. https://doi.org/10.1016/j.cell.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160(4):595–606. https://doi.org/10.1016/j.cell.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai B, Li Z, Ma M, Wang Z, Han P, Abdalla BA, Nie Q, Zhang X (2017) LncRNA-Six1 encodes a micropeptide to activate Six1 in cis and is involved in cell proliferation and muscle growth. Front Physiol 8:230. https://doi.org/10.3389/fphys.2017.00230

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H, Yan GR (2017) A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell 68(1):171–184. e176. https://doi.org/10.1016/j.molcel.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  10. Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15(3):193–204. https://doi.org/10.1038/nrg3520

    Article  CAS  PubMed  Google Scholar 

  11. Rossi M, Bucci G, Rizzotto D, Bordo D, Marzi MJ, Puppo M, Flinois A, Spadaro D, Citi S, Emionite L, Cilli M, Nicassio F, Inga A, Briata P, Gherzi R (2019) LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF-beta. Nat Commun 10(1):1969. https://doi.org/10.1038/s41467-019-09754-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Makarewich CA, Olson EN (2017) Mining for Micropeptides. Trends Cell Biol 27(9):685–696. https://doi.org/10.1016/j.tcb.2017.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigo R, Hubbard TJ (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22(9):1760–1774. https://doi.org/10.1101/gr.135350.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hartford CCR, Lal A (2020) When long noncoding becomes protein coding. Mol Cell Biol 40(6):e00528-19. https://doi.org/10.1128/MCB.00528-19

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature10098

    Article  CAS  PubMed  Google Scholar 

  16. Panda AC, Martindale JL, Gorospe M (2017) Polysome fractionation to analyze mRNA distribution profiles. Bio Protoc 7(3). https://doi.org/10.21769/BioProtoc.2126

  17. Gandin V, Sikstrom K, Alain T, Morita M, McLaughlan S, Larsson O, Topisirovic I (2014) Polysome fractionation and analysis of mammalian translatomes on a genome-wide scale. J Vis Exp 87:51455. https://doi.org/10.3791/51455

    Article  CAS  Google Scholar 

  18. del Prete MJ, Vernal R, Dolznig H, Mullner EW, Garcia-Sanz JA (2007) Isolation of polysome-bound mRNA from solid tissues amenable for RT-PCR and profiling experiments. RNA 13(3):414–421. https://doi.org/10.1261/rna.79407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154(1):240–251. https://doi.org/10.1016/j.cell.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, Fleming ES, Vejnar CE, Lee MT, Rajewsky N, Walther TC, Giraldez AJ (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J 33(9):981–993. https://doi.org/10.1002/embj.201488411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Juntawong P, Girke T, Bazin J, Bailey-Serres J (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111(1):E203–E212. https://doi.org/10.1073/pnas.1317811111

    Article  CAS  PubMed  Google Scholar 

  22. Gao X, Wan J, Liu B, Ma M, Shen B, Qian SB (2015) Quantitative profiling of initiating ribosomes in vivo. Nat Methods 12(2):147–153. https://doi.org/10.1038/nmeth.3208

    Article  CAS  PubMed  Google Scholar 

  23. Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N (2014) Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 9(6):1282–1291. https://doi.org/10.1038/nprot.2014.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jan CH, Williams CC, Weissman JS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346(6210):1257521. https://doi.org/10.1126/science.1257521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dermit M, Dodel M, Mardakheh FK (2017) Methods for monitoring and measurement of protein translation in time and space. Mol BioSyst 13(12):2477–2488. https://doi.org/10.1039/c7mb00476a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang H, Yang L, Wang Y, Chen L, Li H, Xie Z (2019) RPFdb v2.0: an updated database for genome-wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Res 47(D1):D230–D234. https://doi.org/10.1093/nar/gky978

    Article  CAS  PubMed  Google Scholar 

  27. Perkins P, Mazzoni-Putman S, Stepanova A, Alonso J, Heber S (2019) RiboStreamR: a web application for quality control, analysis, and visualization of Ribo-seq data. BMC Genomics 20(Suppl 5):422. https://doi.org/10.1186/s12864-019-5700-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crappe J, Ndah E, Koch A, Steyaert S, Gawron D, De Keulenaer S, De Meester E, De Meyer T, Van Criekinge W, Van Damme P, Menschaert G (2015) PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration. Nucleic Acids Res 43(5):e29. https://doi.org/10.1093/nar/gku1283

    Article  CAS  PubMed  Google Scholar 

  29. Liu SJ, Nowakowski TJ, Pollen AA, Lui JH, Horlbeck MA, Attenello FJ, He D, Weissman JS, Kriegstein AR, Diaz AA, Lim DA (2016) Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol 17:67. https://doi.org/10.1186/s13059-016-0932-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H, Schroeder R, Trauner M, Zatloukal K (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132(1):330–342. https://doi.org/10.1053/j.gastro.2006.08.026

    Article  CAS  PubMed  Google Scholar 

  31. Li YM, Franklin G, Cui HM, Svensson K, He XB, Adam G, Ohlsson R, Pfeifer S (1998) The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J Biol Chem 273(43):28247–28252. https://doi.org/10.1074/jbc.273.43.28247

    Article  CAS  PubMed  Google Scholar 

  32. Artegiani B, Hendriks D, Beumer J, Kok R, Zheng X, Joore I, Chuva de Sousa Lopes S, van Zon J, Tans S, Clevers H (2020) Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol 22(3):321–331. https://doi.org/10.1038/s41556-020-0472-5

    Article  CAS  PubMed  Google Scholar 

  33. Chen J, Brunner AD, Cogan JZ, Nunez JK, Fields AP, Adamson B, Itzhak DN, Li JY, Mann M, Leonetti MD, Weissman JS (2020) Pervasive functional translation of noncanonical human open reading frames. Science 367(6482):1140–1146. https://doi.org/10.1126/science.aay0262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esposito AM, Kinzy TG (2014) In vivo [35S]-methionine incorporation. Methods Enzymol 536:55–64. https://doi.org/10.1016/B978-0-12-420070-8.00005-2

    Article  CAS  PubMed  Google Scholar 

  35. Doerr A (2013) Mass spectrometry-based targeted proteomics. Nat Methods 10(1):23. https://doi.org/10.1038/nmeth.2286

    Article  CAS  PubMed  Google Scholar 

  36. Banfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE Jr, Kundaje A, Gunawardena HP, Yu Y, Xie L, Krajewski K, Strahl BD, Chen X, Bickel P, Giddings MC, Brown JB, Lipovich L (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22(9):1646–1657. https://doi.org/10.1101/gr.134767.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, Karger AD, Budnik BA, Rinn JL, Saghatelian A (2013) Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol 9(1):59–64. https://doi.org/10.1038/nchembio.1120

    Article  CAS  PubMed  Google Scholar 

  38. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587. https://doi.org/10.1038/nature13319

    Article  CAS  PubMed  Google Scholar 

  39. Karunratanakul K, Tang HY, Speicher DW, Chuangsuwanich E, Sriswasdi S (2019) Uncovering thousands of new peptides with sequence-mask-search hybrid De novo peptide sequencing framework. Mol Cell Proteomics 18(12):2478–2491. https://doi.org/10.1074/mcp.TIR119.001656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Housman G, Ulitsky I (2016) Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. Biochim Biophys Acta 1859(1):31–40. https://doi.org/10.1016/j.bbagrm.2015.07.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research to A.L and E.D was supported by the Intramural Research Program of the National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dangelmaier, E.A., Lal, A. (2021). Experimental Validation of the Noncoding Potential for lncRNAs. In: Navarro, A. (eds) Long Non-Coding RNAs in Cancer. Methods in Molecular Biology, vol 2348. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1581-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1581-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1580-5

  • Online ISBN: 978-1-0716-1581-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics