Skip to main content

Case Study 12: Roadmap to Quantifying Ago2-Mediated siRNA Metabolic Activation Kinetics

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

Abstract

Therapeutic siRNA is a prodrug that requires Ago2-mediated site-specific hydrolysis of the sense strand before RNA interference can occur. Although this metabolic activation step was first described 15 years ago, the kinetics of this reaction, and its relationship to in vivo siRNA efficacy, remains unexplored in the literature. To provide a roadmap to address these gaps, we describe a liquid chromatography–mass spectrometry method to monitor formation of the cleaved sense-strand metabolites in a reconstituted system. In the absence of metabolite standards for quantitation, we apply an ionization efficiency correction across a panel of siRNA molecules and find that it improves in vitro–in vivo correlation in a transgenic mouse model. Finally, we lay out a case for why Michaelis-Menten kinetics will likely be inadequate for describing Ago2-mediated metabolic activation kinetics, and propose several alternative models that can be solved numerically and applied to quantitated kinetic data when it becomes available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rock BM, Foti RS (2019) Pharmacokinetic and drug metabolism properties of novel therapeutic modalities. Drug Metab Dispos 47:1097–1099

    Article  CAS  Google Scholar 

  2. Adams D, Gonzalez-Duarte A, O'Riordan WD et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21

    Article  CAS  Google Scholar 

  3. Hoy SM (2018) Patisiran: first global approval. Drugs 78(15):1625–1631

    Article  CAS  Google Scholar 

  4. Scott LJ (2020) Givosiran: first approval. Drugs 80:335–339

    Article  Google Scholar 

  5. Humphreys S, Thayer M, Campbell J et al (2020) Emerging siRNA design principles and consequences for biotransformation and disposition in drug development. J Med Chem 63(12):6407–6422

    Article  CAS  Google Scholar 

  6. Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34:322–333

    Article  CAS  Google Scholar 

  7. Deerberg A, Willkomm S, Restle T (2013) Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein. Proc Natl Acad Sci U S A 110:17850–17855

    Article  CAS  Google Scholar 

  8. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  Google Scholar 

  9. Matranga C, Tomari Y, Shin C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  Google Scholar 

  10. Sheu-Gruttadauria J, MacRae IJ (2017) Structural foundations of RNA silencing by argonaute. J Mol Biol 429:2619–2639

    Article  CAS  Google Scholar 

  11. Leuschner PJ, Ameres SL, Kueng S et al (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320

    Article  CAS  Google Scholar 

  12. Nair JK, Attarwala H, Sehgal A et al (2017) Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res 45:10969–10977

    Article  CAS  Google Scholar 

  13. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  Google Scholar 

  14. Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336:1037–1040

    Article  CAS  Google Scholar 

  15. Nyakas A, Blum LC, Stucki SR et al (2013) OMA and OPA—software-supported mass spectra analysis of native and modified nucleic acids. J Am Soc Mass Spectrom 24:249–256

    Article  CAS  Google Scholar 

  16. Elkayam E, Kuhn CD, Tocilj A et al (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150:100–110

    Article  CAS  Google Scholar 

  17. Dahal UP, Jones JP, Davis JA et al (2011) Small molecule quantification by liquid chromatography-mass spectrometry for metabolites of drugs and drug candidates. Drug Metab Dispos 39:2355–2360

    Article  CAS  Google Scholar 

  18. Lima WF, Wu H, Nichols JG et al (2009) Binding and cleavage specificities of human Argonaute2. J Biol Chem 284:26017–26028

    Article  CAS  Google Scholar 

  19. Hatsis P, Waters NJ, Argikar UA (2017) Implications for metabolite quantification by mass spectrometry in the absence of authentic standards. Drug Metab Dispos 45:492–496

    Article  CAS  Google Scholar 

  20. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  Google Scholar 

  21. Obika S, Sekine M (2018) Synthesis of therapeutic oligonucleotides. Springer, Singapore

    Book  Google Scholar 

  22. Ostergaard ME, Yu J, Kinberger GA et al (2015) Efficient synthesis and biological evaluation of 5′-GalNAc conjugated antisense oligonucleotides. Bioconjug Chem 26:1451–1455

    Article  Google Scholar 

  23. Abbasi A, Paragas EM, Joswig-Jones CA et al (2019) Time course of aldehyde oxidase and why it is nonlinear. Drug Metab Dispos 47:473–483

    Article  CAS  Google Scholar 

  24. Yadav J, Paragas E, Korzekwa K et al (2020) Time-dependent enzyme inactivation: numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 206:107449

    Article  CAS  Google Scholar 

  25. Nagar S, Jones JP, Korzekwa K (2014) A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations. Drug Metab Dispos 42:1575–1586

    Article  Google Scholar 

  26. Fischer E (1894) Influence of configuration on the action of enzymes. J Am Chem Soc 3:2985–2993

    Google Scholar 

  27. Koshland DE (1995) The key–lock theory and the induced fit theory. Angew Chem Int Ed Engl 33:2375–2378

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara C. Humphreys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Humphreys, S.C., Basiri, B., Abbasi, A., Rock, B.M. (2021). Case Study 12: Roadmap to Quantifying Ago2-Mediated siRNA Metabolic Activation Kinetics. In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics