Skip to main content

Basics of Sensor-Based Phenotyping in Wheat

  • Protocol
  • First Online:
Accelerated Breeding of Cereal Crops

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Phenotyping is a crucial building block in crop breeding research, integrating our understanding of crop development, growth and yield under different environments, with the genetic inheritance of key traits. Acquiring crop trait data traditionally involves time-consuming, laborious and destructive sampling techniques, limiting the unification of phenomics data with high-throughput genomics data. Advanced phenotyping platforms developed in the past two decades, deployed both in controlled environments and field, have revolutionized data capture, analysis and output. The combination of high-throughput, accurate sensor technology, with advanced image analysis pipelines, computer learning techniques and data storage systems, have contributed to remote, precise and non-destructive phenotyping. Visible, multispectral, hyperspectral, fluorescence and laser sensors and cameras can non-invasively monitor biochemical, water content, biomass, morphological, phenological, yield- and root-related traits. Here, we describe developments of sensor-based phenotyping for cereals, especially wheat. By examining traits amenable to efficient phenotyping, and the usage of various high-throughput platforms in crop research and breeding, the key benefits of sensor-based phenotyping are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johannsen W (1911) The genotype concept of heredity. In: The American Naturalist, pp 129–159

    Google Scholar 

  2. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  3. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428. https://doi.org/10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108(50):20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5(12):537–542

    Article  CAS  PubMed  Google Scholar 

  6. Pratap A, Gupta S, Nair R, Gupta S, Schafleitner R, Basu P, Singh C, Prajapati U, Gupta A, Nayyar H, Mishra A, Baek K-H (2019) Using plant phenomics to exploit the gains of genomics. Agronomy 9(3):126. https://doi.org/10.3390/agronomy9030126

    Article  Google Scholar 

  7. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11(12):855–866. https://doi.org/10.1038/nrg2897

    Article  CAS  PubMed  Google Scholar 

  8. Furbank RT, von Caemmerer S, Sheehy J, Edwards G (2009) C4 rice: a challenge for plant phenomics. Funct Plant Biol 36:845–856

    Article  PubMed  Google Scholar 

  9. Reynolds M, Manes Y, Izanloo A, Langridge P (2009) Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann Appl Biol 155(3):309–320. https://doi.org/10.1111/j.1744-7348.2009.00351.x

    Article  Google Scholar 

  10. Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54(5):312–320. https://doi.org/10.1111/j.1744-7909.2012.01116.x

    Article  PubMed  Google Scholar 

  11. Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MA, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60(7):1899–1918. https://doi.org/10.1093/jxb/erp016

    Article  CAS  PubMed  Google Scholar 

  12. Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291. https://doi.org/10.1146/annurev-arplant-050312-120137

    Article  CAS  PubMed  Google Scholar 

  13. Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36. https://doi.org/10.1016/j.plantsci.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  14. Gupta PK, Langridge P, Mir RR (2009) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26(2):145–161. https://doi.org/10.1007/s11032-009-9359-7

    Article  Google Scholar 

  15. Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME (2011) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51(6):2597–2606. https://doi.org/10.2135/cropsci2011.05.0253

    Article  Google Scholar 

  16. Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9(2):166–177. https://doi.org/10.1093/bfgp/elq001

    Article  CAS  PubMed  Google Scholar 

  17. Cobb JN, Declerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126(4):867–887. https://doi.org/10.1007/s00122-013-2066-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vargas M, van Eeuwijk FA, Crossa J, Ribaut J-M (2006) Mapping QTLs and QTL x environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112(6):1009–1023. https://doi.org/10.1007/s00122-005-0204-z

    Article  CAS  PubMed  Google Scholar 

  19. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    Article  CAS  PubMed  Google Scholar 

  20. Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61. https://doi.org/10.1016/j.tplants.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  21. Phillips RL (2010) Mobilizing science to break yield barriers. Crop Sci 50:S-99-S-108. https://doi.org/10.2135/cropsci2009.09.0525

    Article  Google Scholar 

  22. Furbank RT, Tester M (2011) Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644. https://doi.org/10.1016/j.tplants.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14(11):20078–20111. https://doi.org/10.3390/s141120078

    Article  PubMed  PubMed Central  Google Scholar 

  24. Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 5:349–379. https://doi.org/10.3390/agronomy4030349

    Article  Google Scholar 

  25. Hanjagi PS, Awaji SM (2018) High-throughput imaging tools to phenotype traits in plants for stress environments. J Pharmacog Phytochem 7(6):97–102

    Google Scholar 

  26. Yendrek CR, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, McIntyre LM, Leakey AD, Ainsworth EA (2017) High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiol 173(1):614–626. https://doi.org/10.1104/pp.16.01447

    Article  CAS  PubMed  Google Scholar 

  27. Blackburn GA (2007) Hyperspectral remote sensing of plant pigments. J Exp Bot 58(4):855–867. https://doi.org/10.1093/jxb/erl123

    Article  CAS  PubMed  Google Scholar 

  28. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99. https://doi.org/10.1016/j.pbi.2015.02.006

    Article  PubMed  Google Scholar 

  29. Gonzalez-Dugo V, Hernandez P, Solis I, Zarco-Tejada P (2015) Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sens 7(10):13586–13605. https://doi.org/10.3390/rs71013586

    Article  Google Scholar 

  30. Dreccer MF, Barnes LR, Meder R (2014) Quantitative dynamics of stem water soluble carbohydrates in wheat can be monitored in the field using hyperspectral reflectance. Field Crop Res 159:70–80. https://doi.org/10.1016/j.fcr.2014.01.001

    Article  Google Scholar 

  31. Zheng Q, Huang W, Cui X, Dong Y, Shi Y, Ma H, Liu L (2018) Identification of wheat yellow rust using optimal three-band spectral indices in different growth stages. Sensors 19(1):35. https://doi.org/10.3390/s19010035

    Article  CAS  PubMed Central  Google Scholar 

  32. Zarco-Tejada PJ, Guillén-Climent ML, Hernández-Clemente R, Catalina A, González MR, Martín P (2013) Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric For Meteorol 171-172:281–294. https://doi.org/10.1016/j.agrformet.2012.12.013

    Article  Google Scholar 

  33. Banerjee BP, Joshi S, Thoday-Kennedy E, Pasam RK, Tibbits J, Hayden M, Spangenberg G, Kant S (2020) High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J Exp Bot 71(15):4604–4615. https://doi.org/10.1093/jxb/eraa143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das B, Sahoo RN, Pargal S, Krishna G, Verma R, Chinnusamy V, Sehgal VK, Gupta VK, Dash SK, Swain P (2018) Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics. Spectrochim Acta A Mol Biomol Spectrosc 192:41–51. https://doi.org/10.1016/j.saa.2017.10.076

    Article  CAS  PubMed  Google Scholar 

  35. Ansari MS, Young KR, Nicolas ME (2016) Determining wavelenth for nitrogen and phosphorus nutrients through hyperspectral remote sensing in wheat (Triticum aestivum L.) plant. Int J Bioresour Stress Manage 7(4):653–662. https://doi.org/10.5958/0976-4038.2016.00125.1

    Article  Google Scholar 

  36. Mahajan GR, Sahoo RN, Pandey RN, Gupta VK, Kumar D (2014) Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, Sulphur and potassium in wheat (Triticum aestivum L.). Precis Agric 15(5):499–522. https://doi.org/10.1007/s11119-014-9348-7

    Article  Google Scholar 

  37. Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H (2007) Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res 91(1):37–46. https://doi.org/10.1007/s11120-006-9077-5

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen GN, Panozzo J, Spangenberg G, Kant S (2016) Phenotyping approaches to evaluate nitrogen-use efficiency related traits of diverse wheat varieties under field conditions. Crop Pasture Sci 67(11):1139–1148. https://doi.org/10.1071/cp16173

    Article  CAS  Google Scholar 

  39. Arregui LM, Lasa B, Lafarga A, Irañeta I, Baroja E, Quemada M (2006) Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions. Eur J Agron 24(2):140–148. https://doi.org/10.1016/j.eja.2005.05.005

    Article  CAS  Google Scholar 

  40. Islam MR, Haque KMS, Akter N, Karim MA (2014) Leaf chlorophyll dynamics in wheat based on SPAD meter reading and its relationship with grain yield. Scientia Agriculturae 8(1):13–18. https://doi.org/10.15192/pscp.sa.2014.4.1.1318

    Article  Google Scholar 

  41. Hunt ER, Daughtry CST, Eitel JUH, Long DS (2011) Remote sensing leaf chlorophyll content using a visible band index. Agron J 103(4):1090–1099. https://doi.org/10.2134/agronj2010.0395

    Article  Google Scholar 

  42. Kanning M, Kühling I, Trautz D, Jarmer T (2018) High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sens 10(12):2000. https://doi.org/10.3390/rs10122000

    Article  Google Scholar 

  43. Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR (2018) Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J Exp Bot 69(3):483–496. https://doi.org/10.1093/jxb/erx421

    Article  CAS  PubMed  Google Scholar 

  44. Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective. Funct Plant Biol 36:880–892

    Article  PubMed  Google Scholar 

  45. Kuckenberg J, Tartachnyk I, Noga G (2009) Detection and differentiation of nitrogen-deficiency, powdery mildew and leaf rust at wheat leaf and canopy level by laser-induced chlorophyll fluorescence. Biosyst Eng 103(2):121–128. https://doi.org/10.1016/j.biosystemseng.2008.09.018

    Article  Google Scholar 

  46. Kuckenberg J, Tartachnyk I, Noga G (2009) Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precis Agric 10(1):34–44. https://doi.org/10.1007/s11119-008-9082-0

    Article  Google Scholar 

  47. Bauriegel E, Herppich W (2014) Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to Fusarium spec. Infections on wheat. Agriculture 4(1):32–57. https://doi.org/10.3390/agriculture4010032

    Article  CAS  Google Scholar 

  48. Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C (2014) Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26(12):4636–4655. https://doi.org/10.1105/tpc.114.129601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen GN, Kant S (2018) Improving nitrogen use efficiency in plants: effective phenotyping in conjunction with agronomic and genetic approaches. Funct Plant Biol 45(6):606–619. https://doi.org/10.1071/FP17266

    Article  CAS  PubMed  Google Scholar 

  50. Fitzgerald G, Rodriguez D, O’Leary G (2010) Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—the canopy chlorophyll content index (CCCI). Field Crop Res 116(3):318–324. https://doi.org/10.1016/j.fcr.2010.01.010

    Article  Google Scholar 

  51. Eitel JU, Vierling LA, Long DS, Hunt ER (2011) Early season remote sensing of wheat nitrogen status using a green scanning laser. Agric For Meteorol 151(10):1338–1345

    Article  Google Scholar 

  52. Erdle K, Mistele B, Schmidhalter U (2011) Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crop Res 124(1):74–84. https://doi.org/10.1016/j.fcr.2011.06.007

    Article  Google Scholar 

  53. Tremblay N, Wang Z, Ma B-L, Belec C, Vigneault P (2009) A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precis Agric 10(2):145–161. https://doi.org/10.1007/s11119-008-9080-2

    Article  Google Scholar 

  54. Duan T, Chapman SC, Guo Y, Zheng B (2017) Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crop Res 210:71–80. https://doi.org/10.1016/j.fcr.2017.05.025

    Article  Google Scholar 

  55. Heege HJ, Reusch S, Thiessen E (2008) Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precis Agric 9(3):115–131. https://doi.org/10.1007/s11119-008-9055-3

    Article  Google Scholar 

  56. Yang M, Hassan MA, Xu K, Zheng C, Rasheed A, Zhang Y, Jin X, Xia X, Xiao Y, He Z (2020) Assessment of water and nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat. Front Plant Sci 11:927. https://doi.org/10.3389/fpls.2020.00927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang B, Wang M, Sha Z, Wang B, Chen J, Yao X, Cheng T, Cao W, Zhu Y (2019) Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles. Sensors 19(20):4416. https://doi.org/10.3390/s19204416

    Article  PubMed Central  Google Scholar 

  58. Lee K-J, Lee B-W (2013) Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. Eur J Agron 48:57–65. https://doi.org/10.1016/j.eja.2013.02.011

    Article  Google Scholar 

  59. Li F, Gnyp ML, Jia L, Miao Y, Yu Z, Koppe W, Bareth G, Chen X, Zhang F (2008) Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crop Res 106(1):77–85. https://doi.org/10.1016/j.fcr.2007.11.001

    Article  Google Scholar 

  60. Vigneau N, Ecarnot M, Rabatel G, Roumet P (2011) Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crop Res 122(1):25–31

    Article  Google Scholar 

  61. Eitel JUH, Magney TS, Vierling LA, Brown TT, Huggins DR (2014) LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crop Res 159:21–32. https://doi.org/10.1016/j.fcr.2014.01.008

    Article  Google Scholar 

  62. Liang L, Di L, Huang T, Wang J, Lin L, Wang L, Yang M (2018) Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm. Remote Sens 10(12):1940. https://doi.org/10.3390/rs10121940

    Article  Google Scholar 

  63. Flowers M, Weisz R, Heiniger R (2003) Quantitative approaches for using color infrared photography for assessing in-season nitrogen status in winter wheat. Agron J 95(5):1189–1200. https://doi.org/10.2134/agronj2003.1189

    Article  Google Scholar 

  64. Eitel JUH, Long DS, Gessler PE, Hunt ER, Brown DJ (2009) Sensitivity of ground-based remote sensing estimates of wheat chlorophyll content to variation in soil reflectance. Soil Sci Soc Am J 73(5):1715–1723. https://doi.org/10.2136/sssaj2008.0288

    Article  CAS  Google Scholar 

  65. Bruning B, Liu H, Brien C, Berger B, Lewis M, Garnett T (2019) The development of hyperspectral distribution maps to predict the content and distribution of nitrogen and water in wheat (Triticum aestivum). Front Plant Sci 10:1380. https://doi.org/10.3389/fpls.2019.01380

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tan C, Du Y, Zhou J, Wang D, Luo M, Zhang Y, Guo W (2018) Analysis of different hyperspectral variables for diagnosing leaf nitrogen accumulation in wheat. Front Plant Sci 9:674. https://doi.org/10.3389/fpls.2018.00674

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hansen P, Schjoerring J (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86(4):542–553

    Article  Google Scholar 

  68. Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105(1-2):1–14. https://doi.org/10.1016/j.fcr.2007.07.004

    Article  Google Scholar 

  69. Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40(1):4–10. https://doi.org/10.1111/pce.12800

    Article  CAS  PubMed  Google Scholar 

  70. Bartlett MK, Scoffoni C, Ardy R, Zhang Y, Sun S, Cao K, Sack L (2012) Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point. Methods Ecol Evol 3(5):880–888. https://doi.org/10.1111/j.2041-210X.2012.00230.x

    Article  Google Scholar 

  71. Saint Pierre C, González JLB (2012) In: Pask A, Pietragalla J, Mullan D, Reynolds M (eds) Leaf water potential, in Physiological Breeding II: A field guide to wheat phenotyping. CIMMYT, Mexico, D.F., pp 18–20

    Google Scholar 

  72. Govender M, Govender PJ, Weiersbye IM, Witkowski EFT, Ahmed F (2009) Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA 35:5

    Article  Google Scholar 

  73. Mullan D, Pietragalla J (2012) In: Pask A, Pietragalla J, Mullan D, Reynolds M (eds) Leaf relative water content, in Physiological Breeding II: A field guide to wheat phenotyping. CIMMYT, Mexico, D.F., pp 25–27

    Google Scholar 

  74. Weber VS, Araus JL, Cairns JE, Sanchez C, Melchinger AE, Orsini E (2012) Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crop Res 128:82–90. https://doi.org/10.1016/j.fcr.2011.12.016

    Article  Google Scholar 

  75. Sun H, Feng M, Xiao L, Yang W, Wang C, Jia X, Zhao Y, Zhao C, Muhammad SK, Li D (2019) Assessment of plant water status in winter wheat (Triticum aestivum L.) based on canopy spectral indices. PLoS One 14(6):e0216890. https://doi.org/10.1371/journal.pone.0216890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gutierrez M, Reynolds MP, Raun WR, Stone ML, Klatt AR (2010) Spectral water indices for assessing yield in elite bread wheat genotypes under well-irrigated, water-stressed, and high-temperature conditions. Crop Sci 50(1):197–214. https://doi.org/10.2135/cropsci2009.07.0381

    Article  Google Scholar 

  77. Zimmermann D, Reuss R, Westhoff M, Gessner P, Bauer W, Bamberg E, Bentrup FW, Zimmermann U (2008) A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status. J Exp Bot 59(11):3157–3167. https://doi.org/10.1093/jxb/ern171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Joshi S, Choukimath A, Isenegger D, Panozzo J, Spangenberg G, Kant S (2019) Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front Plant Sci 10:1285. https://doi.org/10.3389/fpls.2019.01285

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bramley H, Bitter R, Zimmermann G, Zimmermann U (2015) Simultaneous recording of diurnal changes in leaf turgor pressure and stem water status of bread wheat reveal variation in hydraulic mechanisms in response to drought. Funct Plant Biol 42(10):1001–1009. https://doi.org/10.1071/FP15087

    Article  CAS  PubMed  Google Scholar 

  80. Kant S, Burch D, Ehrenberger W, Bitter R, Rüger S, Mason J, Zimmermann U, Spangenberg G, Léon J (2014) A novel crop water analysis system: identification of water stress tolerant genotypes of canola (Brassica napus L.) using non-invasive magnetic turgor pressure probes. Plant Breed 133(5):602–608. https://doi.org/10.1111/pbr.12187

    Article  CAS  Google Scholar 

  81. Jin X, Xu X, Song X, Li Z, Wang J, Guo W (2013) Estimation of leaf water content in winter wheat using grey relational analysis–partial least squares modeling with hyperspectral data. Agron J 105(5):1385–1392. https://doi.org/10.2134/agronj2013.0088

    Article  Google Scholar 

  82. De Bei R, Cozzolino D, Sullivan W, Cynkar W, Fuentes S, Dambergs R, Pech J, Tyerman S (2011) Non-destructive measurement of grapevine water potential using near infrared spectroscopy. Aust J Grape Wine Res 17(1):62–71. https://doi.org/10.1111/j.1755-0238.2010.00117.x

    Article  Google Scholar 

  83. Neilson EH, Edwards AM, Blomstedt CK, Berger B, Moller BL, Gleadow RM (2015) Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot 66(7):1817–1832. https://doi.org/10.1093/jxb/eru526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Feng W, Qi S, Heng Y, Zhou Y, Wu Y, Liu W, He L, Li X (2017) Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress. Front Plant Sci 8:1219. https://doi.org/10.3389/fpls.2017.01219

    Article  PubMed  PubMed Central  Google Scholar 

  85. Seelig HD, Hoehn A, Stodieck L, Klaus D, Adams Iii W, Emery W (2008) The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. Int J Remote Sens 29(13):3701–3713

    Article  Google Scholar 

  86. Cohen Y, Alchanatis V, Meron M, Saranga Y, Tsipris J (2005) Estimation of leaf water potential by thermal imagery and spatial analysis. J Exp Bot 56(417):1843–1852. https://doi.org/10.1093/jxb/eri174

    Article  CAS  PubMed  Google Scholar 

  87. Gutierrez M, Reynolds MP, Klatt AR (2010) Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes. J Exp Bot 61(12):3291–3303. https://doi.org/10.1093/jxb/erq156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Babar MA, Reynolds M, van Ginkel N, Klatt AR, Ruan WR, Stone ML (2006) Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci 46(2):578–588

    Article  Google Scholar 

  89. Suárez L, Zarco-Tejada PJ, Berni JAJ, González-Dugo V, Fereres E (2009) Modelling PRI for water stress detection using radiative transfer models. Remote Sens Environ 113(4):730–744. https://doi.org/10.1016/j.rse.2008.12.001

    Article  Google Scholar 

  90. Urban J, Ingwers M, McGuire MA, Teskey RO (2017) Stomatal conductance increases with rising temperature. Plant Signal Behaviour 12(8):e1356534. https://doi.org/10.1080/15592324.2017.1356534

    Article  CAS  Google Scholar 

  91. Zhang X, Wang Y, Huang G, Feng F, Liu X, Guo R, Gu F, Hu X, Yang Z, Zhong X, Mei X (2020) Atmospheric humidity and genotype are key determinants of the diurnal stomatal conductance pattern. J Agron Crop Sci 206(2):161–168. https://doi.org/10.1111/jac.12375

    Article  CAS  Google Scholar 

  92. Munns R, James RA, Sirault XR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61(13):3499–3507. https://doi.org/10.1093/jxb/erq199

    Article  CAS  PubMed  Google Scholar 

  93. James RA, von Caemmerer S, Condon AGT, Zwart AB, Munns R (2008) Genetic variation in tolerance to the osmotic stress componentof salinity stress in durum wheat. Funct Plant Biol 35(2):111–123. https://doi.org/10.1071/FP07234

    Article  CAS  PubMed  Google Scholar 

  94. Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Article  Google Scholar 

  95. Jiang Q, Roche D, Monaco TA, Hole D (2006) Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Biol 8(4):515–521. https://doi.org/10.1055/s-2006-923964

    Article  CAS  PubMed  Google Scholar 

  96. Sirault XRR, James RA, Furbank RT (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36(11):970–977. https://doi.org/10.1071/FP09182

    Article  CAS  PubMed  Google Scholar 

  97. Zia S, Romano G, Spreer W, Sanchez C, Cairns J, Araus JL, Müller J (2013) Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology. J Agron Crop Sci 199(2):75–84. https://doi.org/10.1111/j.1439-037X.2012.00537.x

    Article  Google Scholar 

  98. Blum A, Mayer J, Gozlan G (1982) Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crop Res 5:137–146. https://doi.org/10.1016/0378-4290(82)90014-4

    Article  Google Scholar 

  99. Gallé Á, Csiszár J, Benyó D, Laskay G, Leviczky T, Erdei L, Tari I (2013) Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in stress responses. J Plant Physiol 170(16):1389–1399. https://doi.org/10.1016/j.jplph.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  100. Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233(2):179–187. https://doi.org/10.1023/a:1010346601643

    Article  CAS  Google Scholar 

  101. Baluja J, Diago MP, Balda P, Zorer R, Meggio F, Morales F, Tardaguila J (2012) Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig Sci 30(6):511–522. https://doi.org/10.1007/s00271-012-0382-9

    Article  Google Scholar 

  102. Deery DM, Rebetzke GJ, Jimenez-Berni JA, James RA, Condon AG, Bovill WD, Hutchinson P, Scarrow J, Davy R, Furbank RT (2016) Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front Plant Sci 7:1808. https://doi.org/10.3389/fpls.2016.01808

    Article  PubMed  PubMed Central  Google Scholar 

  103. Berni J, Zarco-Tejada PJ, Suarez L, Fereres E (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens 47(3):722–738. https://doi.org/10.1109/tgrs.2008.2010457

    Article  Google Scholar 

  104. Fuentes S, De Bei R, Pech J, Tyerman S (2012) Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig Sci 30(6):523–536. https://doi.org/10.1007/s00271-012-0375-8

    Article  Google Scholar 

  105. Liu Y, Subhash C, Yan J, Song C, Zhao J, Li J (2011) Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ Exp Bot 71(2):158–165. https://doi.org/10.1016/j.envexpbot.2010.11.010

    Article  Google Scholar 

  106. Fehér-Juhász E, Majer P, Sass L, Lantos C, Csiszár J, Turóczy Z, Mihály R, Mai A, Horváth GV, Vass I, Dudits D (2014) Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiol Plant 63:663–673. https://doi.org/10.1007/s11738-013-1445-0

    Article  CAS  Google Scholar 

  107. Chapman S, Merz T, Chan A, Jackway P, Hrabar S, Dreccer M, Holland E, Zheng B, Ling T, Jimenez-Berni J (2014) Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy 4(2):279–301. https://doi.org/10.3390/agronomy4020279

    Article  Google Scholar 

  108. Gracia-Romero A, Kefauver SC, Fernandez-Gallego JA, Vergara-Díaz O, Nieto-Taladriz MT, Araus JL (2019) UAV and ground image-based phenotyping: a proof of concept with durum wheat. Remote Sens 11(10):1244. https://doi.org/10.3390/rs11101244

    Article  Google Scholar 

  109. Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36(11):978–989. https://doi.org/10.1071/FP09123

    Article  PubMed  Google Scholar 

  110. O'Shaughnessy SA, Hebel MA, Evett SR, Colaizzi PD (2011) Evaluation of a wireless infrared thermometer with a narrow field of view. Comput Electron Agric 76(1):59–68. https://doi.org/10.1016/j.compag.2010.12.017

    Article  Google Scholar 

  111. Minervini M, Abdelsamea MM, Tsaftaris SA (2014) Image-based plant phenotyping with incremental learning and active contours. Eco Inform 23:35–48. https://doi.org/10.1016/j.ecoinf.2013.07.004

    Article  Google Scholar 

  112. Yu K, Kirchgessner N, Grieder C, Walter A, Hund A (2017) An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping. Plant Methods 13(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  113. Tessmer OL, Jiao Y, Cruz JA, Kramer DM, Chen J (2013) Functional approach to high-throughput plant growth analysis. BMC Syst Biol 7(S6):S17

    Article  PubMed  PubMed Central  Google Scholar 

  114. Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Huang C, Yang W, Duan L, Jiang N, Chen G, Xiong L, Liu Q (2013) Rice panicle length measuring system based on dual-camera imaging. Comput Electron Agric 98:158–165. https://doi.org/10.1016/j.compag.2013.08.006

    Article  Google Scholar 

  116. Qiu R, Yang C, Moghimi A, Zhang M, Steffenson BJ, Hirsch CD (2019) Detection of fusarium head blight in wheat using a deep neural network and color imaging. Remote Sens 11(22):2658. https://doi.org/10.3390/rs11222658

    Article  Google Scholar 

  117. Ma J, Li Y, Chen Y, Du K, Zheng F, Zhang L, Sun Z (2019) Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network. Eur J Agron 103:117–129. https://doi.org/10.1016/j.eja.2018.12.004

    Article  Google Scholar 

  118. Banerjee BP, Spangenberg G, Kant S (2020) Fusion of spectral and structural information from aerial images for improved biomass estimation. Remote Sens 12(19):3164. https://doi.org/10.3390/rs12193164

    Article  Google Scholar 

  119. Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F (2011) HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinf 12:148

    Article  Google Scholar 

  120. Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9(5):e97047. https://doi.org/10.1371/journal.pone.0097047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Maphosa L, Thoday-Kennedy E, Vakani J, Phelan A, Badenhorst P, Slater A, Spangenberg G, Kant S (2016) Phenotyping wheat under salt stress conditions using a 3D laser scanner. Israel J Plant Sci:1–8. https://doi.org/10.1080/07929978.2016.1243405

  122. Nguyen GN, Maharjan P, Maphosa L, Vakani J, Thoday-Kennedy E, Kant S (2019) A robust automated image-based phenotyping method for rapid vegetative screening of wheat germplasm for nitrogen use efficiency. Front Plant Sci 10:1372

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hairmansis A, Berger B, Tester M, Roy SJ (2014) Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249. https://doi.org/10.1111/j.1365-3040.2008.01916.x

    Article  CAS  PubMed  Google Scholar 

  125. Tackenberg O (2007) A new method for non-destructive measurement of biomass, growth rates, vertical biomass distribution and dry matter content based on digital image analysis. Ann Bot 99(4):777–783. https://doi.org/10.1093/aob/mcm009

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087. https://doi.org/10.1038/ncomms6087

    Article  CAS  PubMed  Google Scholar 

  127. Holman F, Riche A, Michalski A, Castle M, Wooster M, Hawkesford M (2016) High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens 8(12):1031. https://doi.org/10.3390/rs8121031

    Article  Google Scholar 

  128. Meng R, Saade S, Kurtek S, Berger B, Brien C, Pillen K, Tester M, Sun Y (2017) Growth curve registration for evaluating salinity tolerance in barley. Plant Methods 13(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Duan T, Chapman SC, Holland E, Rebetzke GJ, Guo Y, Zheng B (2016) Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes. J Exp Bot 67(15):4523–4534. https://doi.org/10.1093/jxb/erw227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cabrera-Bosquet L, Molero G, Stellacci A, Bort J, Nogués S, Araus J (2011) NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Res Commun 39(1):147–159. https://doi.org/10.1556/crc.39.2011.1.15

    Article  Google Scholar 

  131. Torres-Sánchez J, Peña JM, de Castro AI, López-Granados F (2014) Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput Electron Agric 103:104–113. https://doi.org/10.1016/j.compag.2014.02.009

    Article  Google Scholar 

  132. Mutanga O, Skidmore AK (2004) Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int J Remote Sens 25(19):3999–4014

    Article  Google Scholar 

  133. Aasen H, Burkart A, Bolten A, Bareth G (2015) Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance. ISPRS J Photogramm Remote Sens 108:245–259. https://doi.org/10.1016/j.isprsjprs.2015.08.002

    Article  Google Scholar 

  134. Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, Bareth G (2014) Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens 6(11):10395–10412. https://doi.org/10.3390/rs61110395

    Article  Google Scholar 

  135. Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp ML, Bareth G (2015) Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs Geoinf 39:79–87. https://doi.org/10.1016/j.jag.2015.02.012

    Article  Google Scholar 

  136. Geipel J, Link J, Claupein W (2014) Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens 6(11):10335–10355. https://doi.org/10.3390/rs61110335

    Article  Google Scholar 

  137. Jimenez-Berni JA, Deery DM, Rozas-Larraondo P, Condon ATG, Rebetzke GJ, James RA, Bovill WD, Furbank RT, Sirault XRR (2018) High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Front Plant Sci 9:237. https://doi.org/10.3389/fpls.2018.00237

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hosoi F, Omasa K (2009) Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS J Photogramm Remote Sens 64(2):151–158. https://doi.org/10.1016/j.isprsjprs.2008.09.003

    Article  Google Scholar 

  139. Li W, Niu Z, Huang N, Wang C, Gao S, Wu C (2015) Airborne LiDAR technique for estimating biomass components of maize: a case study in Zhangye City, Northwest China. Ecol Indic 57:486–496. https://doi.org/10.1016/j.ecolind.2015.04.016

    Article  Google Scholar 

  140. Vadez V, Kholova J, Hummel G, Zhokhavets U, Gupta SK, Hash CT (2015) LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J Exp Bot 66(18):5581–5593. https://doi.org/10.1093/jxb/erv251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McCormick RF, Truong SK, Mullet JE (2016) 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture. Plant Physiol 172(2):823–834. https://doi.org/10.1104/pp.16.00948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F (2016) High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol 212(1):269–281. https://doi.org/10.1111/nph.14027

    Article  CAS  PubMed  Google Scholar 

  143. Xie Q, Huang W, Liang D, Chen P, Wu C, Yang G, Zhang J, Huang L, Zhang D (2014) Leaf area index estimation using vegetation indices derived from airborne hyperspectral images in winter wheat. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3586–3594. https://doi.org/10.1109/jstars.2014.2342291

    Article  Google Scholar 

  144. Liu J, Pattey E (2010) Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agric For Meteorol 150(11):1485–1490. https://doi.org/10.1016/j.agrformet.2010.08.002

    Article  Google Scholar 

  145. Gebbers R, Ehlert D, Adamek R (2011) Rapid mapping of the leaf area index in agricultural crops. Agron J 103(5):1532–1541. https://doi.org/10.2134/agronj2011.0201

    Article  Google Scholar 

  146. Anderegg J, Yu K, Aasen H, Walter A, Liebisch F, Hund A (2020) Spectral vegetation indices to track senescence dynamics in diverse wheat germplasm. Front Plant Sci 10:1749. https://doi.org/10.3389/fpls.2019.01749

    Article  PubMed  PubMed Central  Google Scholar 

  147. Christopher JT, Veyradier M, Borrell AK, Harvey G, Fletcher S, Chenu K (2014) Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics. Funct Plant Biol 41(11):1035–1048. https://doi.org/10.1071/FP14052

    Article  PubMed  Google Scholar 

  148. Hassan M, Yang M, Rasheed A, Jin X, Xia X, Xiao Y, He Z (2018) Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sens 10(6):809. https://doi.org/10.3390/rs10060809

    Article  Google Scholar 

  149. Cai J, Okamoto M, Atieno J, Sutton T, Li Y, Miklavcic SJ (2016) Quantifying the onset and progression of plant senescence by color image analysis for high throughput applications. PLoS One 11(6):e0157102. https://doi.org/10.1371/journal.pone.0157102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Camargo AV, Mott R, Gardner KA, Mackay IJ, Corke F, Doonan JH, Kim JT, Bentley AR (2016) Determining phenological patterns associated with the onset of senescence in a wheat MAGIC mapping population. Front Plant Sci 7:1540. https://doi.org/10.3389/fpls.2016.01540

    Article  PubMed  PubMed Central  Google Scholar 

  151. Das Choudhury S, Bashyam S, Qiu Y, Samal A, Awada T (2018) Holistic and component plant phenotyping using temporal image sequence. Plant Methods 14(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  152. Koh JC, Hayden M, Daetwyler H, Kant S (2019) Estimation of crop plant density at early mixed growth stages using UAV imagery. Plant Methods 15(1):64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Xiong X, Yu L, Yang W, Liu M, Jiang N, Wu D, Chen G, Xiong L, Liu K, Liu Q (2017) A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods 13(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  154. Jin X, Liu S, Baret F, Hemerlé M, Comar A (2017) Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens Environ 198:105–114. https://doi.org/10.1016/j.rse.2017.06.007

    Article  Google Scholar 

  155. Liu S, Baret F, Allard D, Jin X, Andrieu B, Burger P, Hemmerlé M, Comar A (2017) A method to estimate plant density and plant spacing heterogeneity: application to wheat crops. Plant Methods 13(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  156. Liu S, Baret F, Andrieu B, Burger P, Hemmerle M (2017) Estimation of wheat plant density at early stages using high resolution imagery. Front Plant Sci 8:739. https://doi.org/10.3389/fpls.2017.00739

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sankaran S, Khot LR, Carter AH (2015) Field-based crop phenotyping: multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput Electron Agric 118:372–379

    Article  Google Scholar 

  158. Bendig J, Bolten A, Bareth G (2013) UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogrammetrie-Fernerkundung-Geoinformation 2013(6):551–562

    Article  Google Scholar 

  159. Bareth G, Bendig J, Tilly N, Hoffmeister D, Aasen H, Bolten A (2016) A comparison of UAV- and TLS-derived plant height for crop monitoring: using polygon grids for the analysis of crop surface models (CSMs). Photogrammetrie-Fernerkundung-Geoinformation 2016(2):85–94. https://doi.org/10.1127/pfg/2016/0289

    Article  Google Scholar 

  160. Singh D, Wang X, Kumar U, Gao L, Noor M, Imtiaz M, Singh RP, Poland J (2019) High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front Plant Sci 10:394. https://doi.org/10.3389/fpls.2019.00394

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bi K, Jiang P, Li L, Shi B, Wang C (2010) Non-destructive measurement of wheat spike characteristics based on morphological image processing. Trans Chin Soc Agric Eng 26(12):212–216

    Google Scholar 

  162. Korohou T, Okinda C, Li H, Cao Y, Nyalala I, Huo L, Potcho M, Li X, Ding Q (2020) Wheat grain yield estimation based on image morphological properties and wheat biomass. J Sens 2020:1–11. https://doi.org/10.1155/2020/1571936

    Article  CAS  Google Scholar 

  163. Ikeda M, Hirose Y, Takashi T, Shibata Y, Yamamura T, Komura T, Doi K, Ashikari M, Mastsuoka M, Kitano H (2010) Analysis of rice panicle traits and detection of QTLs using an image analyzing method. Breed Sci 60:55–64

    Article  Google Scholar 

  164. Qiongyan L, Cai J, Berger B, Okamoto M, Miklavcic SJ (2017) Detecting spikes of wheat plants using neural networks with Laws texture energy. Plant Methods 13(1):83

    Article  PubMed  PubMed Central  Google Scholar 

  165. Alkhudaydi T, Reynolds D, Griffiths S, Zhou J, de la Iglesia B (2019, 2019) An exploration of deep-learning based phenotypic analysis to detect spike regions in field conditions for UK bread wheat. Plant Phenomics:1–17. https://doi.org/10.34133/2019/7368761

  166. Hasan MM, Chopin JP, Laga H, Miklavcic SJ (2018) Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 14(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  167. Madec S, Jin X, Lu H, De Solan B, Liu S, Duyme F, Heritier E, Baret F (2019) Ear density estimation from high resolution RGB imagery using deep learning technique. Agric For Meteorol 264:225–234. https://doi.org/10.1016/j.agrformet.2018.10.013

    Article  Google Scholar 

  168. Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ (2017) Automated method to determine two critical growth stages of wheat: heading and flowering. Front Plant Sci 8:252. https://doi.org/10.3389/fpls.2017.00252

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sadeghi-Tehran P, Virlet N, Ampe EM, Reyns P, Hawkesford MJ (2019) DeepCount: in-field automatic quantification of wheat spikes using simple linear iterative clustering and deep convolutional neural networks. Front Plant Sci 10:1176. https://doi.org/10.3389/fpls.2019.01176

    Article  PubMed  PubMed Central  Google Scholar 

  170. Velumani K, Madec S, de Solan B, Lopez-Lozano R, Gillet J, Labrosse J, Jezequel S, Comar A, Baret F (2020) An automatic method based on daily in situ images and deep learning to date wheat heading stage. Field Crop Res 252:107793. https://doi.org/10.1016/j.fcr.2020.107793

    Article  Google Scholar 

  171. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford MJ (2017) Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Funct Plant Biol 44(1):143–153. https://doi.org/10.1071/FP16163

    Article  Google Scholar 

  172. Xiong H, Cao Z, Lu H, Madec S, Liu L, Shen C (2019) TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks. Plant Methods 15(1):150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhou C, Liang D, Yang X, Xu B, Yang G (2018) Recognition of wheat spike from field based phenotype platform using multi-sensor fusion and imaximum entropy segmentation algorithms. Remote Sens 10(2):246. https://doi.org/10.3390/rs10020246

    Article  Google Scholar 

  174. Wang X, Xuan H, Evers B, Shrestha S, Pless R, Poland J (2019) High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. Gigascience 8:1–11. https://doi.org/10.1093/gigascience/giz120

    Article  Google Scholar 

  175. Marti J, Bort J, Slafer GA, Araus JL (2007) Can wheat yield be assessed by early measurements of normalized difference vegetation index? Ann Appl Biol 150(2):253–257. https://doi.org/10.1111/j.1744-7348.2007.00126.x

    Article  Google Scholar 

  176. Du M, Noguchi N (2017) Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color images acquired from UAV-camera system. Remote Sens 9(3):289. https://doi.org/10.3390/rs9030289

    Article  Google Scholar 

  177. Hayes BJ, Panozzo J, Walker CK, Choy AL, Kant S, Wong D, Tibbits J, Daetwyler HD, Rochfort S, Hayden MJ, Spangenberg GC (2017) Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes. Theor Appl Genet 130(12):2505–2519. https://doi.org/10.1007/s00122-017-2972-7

    Article  CAS  PubMed  Google Scholar 

  178. Fox GP, Kelly A, Sweeney N, Hocroft DM (2011) Development of a single kernel NIR barley protein calibration and assessment of variation in protein on grain quality. J Inst Brew 117(4):582–586

    Article  CAS  Google Scholar 

  179. Mahesh S, Manickavasagan A, Jayas DS, Paliwal J, White NDG (2008) Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst Eng 101(1):50–57. https://doi.org/10.1016/j.biosystemseng.2008.05.017

    Article  Google Scholar 

  180. Clohessy JW, Pauli D, Kreher KM, Buckler ES, Armstrong PR, Wu T, Hoekenga OA, Jannink JL, Sorrells ME, Gore MA (2018) A low-cost automated system for high-throughput phenotyping of single oat seeds. Plant Phenom J 1(1):1–13. https://doi.org/10.2135/tppj2018.07.0005

    Article  Google Scholar 

  181. ElMasry G, Mandour N, Al-Rejaie S, Belin E, Rousseau D (2019) Recent applications of multispectral imaging in seed phenotyping and quality monitoring-an overview. Sensors 19(5):1090. https://doi.org/10.3390/s19051090

    Article  PubMed Central  Google Scholar 

  182. Singh CB, Jayas DS, Paliwal J, White ND (2010) Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Comput Electron Agric 73(2):118–125

    Article  Google Scholar 

  183. Kun L, Jiani H, Ruiyin H, Qiujin W, Yinyin C, Mingxia S (2020) Comparison of Vis-NIR and SWIR hyperspectral imaging for the non-destructive detection of DON levels in fusarium head blight wheat kernels and wheat flour. Infrared Phys Technol 106:103281

    Article  CAS  Google Scholar 

  184. Manschadi AM, Christopher J, de Voil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33(9):823–837. https://doi.org/10.1071/FP06055

    Article  CAS  PubMed  Google Scholar 

  185. Manschadi AM, Hammer GL, Christopher JT (2008) And deVoil, P., Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303(1-2):115–129. https://doi.org/10.1007/s11104-007-9492-1

    Article  CAS  Google Scholar 

  186. Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT (2015) High-throughput phenotyping of seminal root traits in wheat. Plant Methods 11(1):1–11

    Article  Google Scholar 

  187. Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths S, Bennett MJ, King J, Wells DM (2015) Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot 66(8):2283–2292. https://doi.org/10.1093/jxb/erv006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Adeleke E, Millas R, McNeal W, Faris J, Taheri A (2020) Variation analysis of root system development in wheat seedlings using root phenotyping system. Agronomy 10(2):206. https://doi.org/10.3390/agronomy10020206

    Article  Google Scholar 

  189. Rich SM, Christopher J, Richards R, Watt M (2020) Root phenotypes of young wheat plants grown in controlled environments show inconsistent correlation with mature root traits in the field. J Exp Bot 71(16):4751–4762. https://doi.org/10.1093/jxb/eraa201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hargreaves CE, Gregory PJ, Bengough AG (2009) Measuring root traits in barley (Hordeum vulgare ssp. vulgare and ssp. spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant Soil 316(1-2):285–297. https://doi.org/10.1007/s11104-008-9780-4

    Article  CAS  Google Scholar 

  191. Chen YL, Dunbabin VM, Diggle AJ, Siddique KH, Rengel Z (2011) Development of a novel semi-hydroponic phenotyping system for studying root architecture. Funct Plant Biol 38(5):355–363

    Article  PubMed  Google Scholar 

  192. Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee CR, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, Moore BT, Harer J, Edelsbrunner H, Mitchell-Olds T, Weitz JS, Benfey PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci USA 110(18):E1695–E1704. https://doi.org/10.1073/pnas.1304354110

    Article  PubMed  PubMed Central  Google Scholar 

  193. Hassouni K, Alahmad S, Belkadi B, Filali-Maltouf A, Hickey LT, Bassi FM (2018) Root system architecture and its association with yield under different water regimes in durum wheat. Crop Sci 58(6):2331–2346. https://doi.org/10.2135/cropsci2018.01.0076

    Article  Google Scholar 

  194. Nagel KA, Bonnett D, Furbank R, Walter A, Schurr U, Watt M (2015) Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping. J Exp Bot 66(18):5441–5452. https://doi.org/10.1093/jxb/erv290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nagel KA, Putz A, Gilmer F, Heinz K, Fischbach A, Pfeifer J, Faget M, Blossfeld S, Ernst M, Dimaki C, Kastenholz B, Kleinert AK, Galinski A, Scharr H, Fiorani F, Schurr U (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol 39(11):891–904. https://doi.org/10.1071/FP12023

    Article  PubMed  Google Scholar 

  196. Jeudy C, Adrian M, Baussard C, Bernard C, Bernaud E, Bourion V, Busset H, Cabrera-Bosquet L, Cointault F, Han S (2016) RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods 12(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Bodner G, Nakhforoosh A, Arnold T, Leitner D (2018) Hyperspectral imaging: a novel approach for plant root phenotyping. Plant Methods 14(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  198. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2010) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341(1-2):75–87. https://doi.org/10.1007/s11104-010-0623-8

    Article  CAS  Google Scholar 

  199. York LM, Slack S, Bennett MJ, Foulkes MJ (2018) Wheat shovelomics I: A field phenotyping approach for characterising the structure and function of root systems in tillering species. BioRxiv:280875

    Google Scholar 

  200. Wasson A, Bischof L, Zwart A, Watt M (2016) A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field. J Exp Bot 67(4):1033–1043. https://doi.org/10.1093/jxb/erv570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chen X, Ding Q, Blaszkiewicz Z, Sun J, Sun Q, He R, Li Y (2017) Phenotyping for the dynamics of field wheat root system architecture. Sci Rep 7:37649. https://doi.org/10.1038/srep37649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chen X, Li Y, He R, Ding Q (2018) Phenotyping field-state wheat root system architecture for root foraging traits in response to environment× management interactions. Sci Rep 8(1):2642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Whalley WR, Binley A, Watts CW, Shanahan P, Dodd IC, Ober ES, Ashton RW, Webster CP, White RP, Hawkesford MJ (2017) Methods to estimate changes in soil water for phenotyping root activity in the field. Plant Soil 415(1):407–422. https://doi.org/10.1007/s11104-016-3161-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lontoc-Roy M, Dutilleul P, Prasher SO, Han L, Brouillet T, Smith DL (2006) Advances in the acquisition and analysis of CT scan data to isolate a crop root system from the soil medium and quantify root system complexity in 3-D space. Geoderma 137(1-2):231–241. https://doi.org/10.1016/j.geoderma.2006.08.025

    Article  Google Scholar 

  205. Mairhofer S, Zappala S, Tracy S, Sturrock C, Bennett MJ, Mooney SJ, Pridmore TP (2013) Recovering complete plant root system architectures from soil via X-ray μ-computed tomography. Plant Methods 9(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  206. Metzner R, Eggert A, Van Dusschoten D, Pflugfelder D, Gerth S, Schurr U, Uhlmann N, Jahnke S (2015) Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  207. van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Buhler J, Schurr U, Jahnke S (2016) Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol 170(3):1176–1188. https://doi.org/10.1104/pp.15.01388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Minervini M, Scharr H, Tsaftaris SA (2015) Image analysis: The new bottleneck in plant phenotyping. IEEE Signal Process Mag 32(4):126–131. https://doi.org/10.1109/msp.2015.2405111

    Article  Google Scholar 

  209. Singh AK, Ganapathysubramanian B, Sarkar S, Singh A (2018) Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci 23(10):883–898. https://doi.org/10.1016/j.tplants.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  210. Debauche O, Mahmoudi SA, De Cock N, Mahmoudi S, Manneback P, Lebeau F (2020) Cloud architecture for plant phenotyping research. Concurrency Comput Pract Exp 32(17):e5661. https://doi.org/10.1002/cpe.5661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Kant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thoday-Kennedy, E., Good, N., Kant, S. (2022). Basics of Sensor-Based Phenotyping in Wheat. In: Bilichak, A., Laurie, J.D. (eds) Accelerated Breeding of Cereal Crops. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1526-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1526-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1525-6

  • Online ISBN: 978-1-0716-1526-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics