Skip to main content

Monitoring GPCR-Mediated cAMP Accumulation in Rat Striatal Synaptosomes

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 169))

  • 579 Accesses

Abstract

G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors, thus representing the more investigated drug targets in the design of new pharmacotherapeutic strategies. In this family of receptors, the binding of an agonist typically triggers the activation of heterotrimeric G proteins, which in turn control the propagation of secondary messenger molecules, such as cyclic adenosine monophosphate (cAMP), which play a key role in important physiological processes. Accordingly, determining GPCR-mediated cAMP accumulation in native tissue (i.e., synaptosomes) constitutes an important step in the pharmacological characterization of these receptors. Here, we describe the methodology used to assess GPCR-mediated cAMP accumulation in rat striatal synaptosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flock T, Ravarani CNJ, Sun D et al (2015) Universal allosteric mechanism for Gα activation by GPCRs. Nature 524:173–179. https://doi.org/10.1038/nature14663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tehan BG, Bortolato A, Blaney FE et al (2014) Unifying family a GPCR theories of activation. Pharmacol Ther 143:51–60. https://doi.org/10.1016/j.pharmthera.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  3. Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192. https://doi.org/10.1016/j.tips.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  4. Bourne HR (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9:134–142

    Article  CAS  Google Scholar 

  5. Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ (2013) Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol 182:209–218. https://doi.org/10.1016/j.jsb.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204. https://doi.org/10.1152/physrev.00003.2005

    Article  CAS  PubMed  Google Scholar 

  7. Kull B, Svenningsson P, Fredholm BB (2000) Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Mol Pharmacol 58:771–777

    Article  CAS  Google Scholar 

  8. Ferré S, Ciruela F, Woods A et al (2003) Glutamate mGluR5/adenosine A2A/dopamine D2 receptor interactions in the striatum. Implications for drug therapy in neuro-psychiatric disorders and drug abuse. Curr Med Chem Cen Nerv Syst Ag 3:1–26

    Article  Google Scholar 

  9. Ferré S, Ciruela F, Quiroz C et al (2007) Adenosine receptor heteromers and their integrative role in striatal function. Sci World J 7:74–85. https://doi.org/10.1100/tsw.2007.211

    Article  Google Scholar 

  10. Köfalvi A, Moreno E, Cordomí A et al (2020) Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biol. https://doi.org/10.1186/s12915-020-0739-0

  11. Kull B, Ferre S, Arslan G et al (1999) Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. Biochem Pharmacol 58:1035–1045

    Article  CAS  Google Scholar 

  12. Håkansson K, Galdi S, Hendrick J et al (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96:482–488. https://doi.org/10.1111/j.1471-4159.2005.03558.x

    Article  CAS  PubMed  Google Scholar 

  13. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25:578–588

    Article  CAS  Google Scholar 

  14. Ferré S, Quiroz C, Woods AS et al (2008) An update on adenosine A2A-dopamine D2 receptor interactions. Implications for the function of G protein-coupled receptors. Curr Pharm Des 14:1468–1474

    Article  Google Scholar 

  15. Ferré S, Bonaventura J, Zhu W et al (2018) Essential control of the function of the striatopallidal neuron by pre-coupled complexes of adenosine A2A-dopamine D2 receptor heterotetramers and adenylyl cyclase. Front Pharmacol 9:243. https://doi.org/10.3389/fphar.2018.00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark JD, Gebhart GF, Gonder JC et al (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    Article  Google Scholar 

  17. Villar-Menéndez I, Nuñez F, Díaz-Sánchez S et al (2014) Striatal adenosine A2A receptor expression is controlled by S-adenosyl-L-methionine-mediated methylation. Purinergic Signal 10:523–528. https://doi.org/10.1007/s11302-014-9417-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación-FEDER-UE (SAF2017-87349-R MICIU/AEI/FEDER/UE) and Generalitat de Catalunya (2017SGR1604). We thank Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya for IDIBELL institutional support. We thank E. Castaño and B. Torrejón from the Scientific and Technical Services (SCT) group at the Bellvitge Campus of the University of Barcelona for their technical assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Taura, J., Fernández-Dueñas, V., Ciruela, F. (2021). Monitoring GPCR-Mediated cAMP Accumulation in Rat Striatal Synaptosomes. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics