Skip to main content

A High-Throughput Chromatin Immunoprecipitation Sequencing Approach to Study the Role of MYC on the Epigenetic Landscape

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2318))

Abstract

MYC is a transcription factor playing multiple functions both in physiological and pathological settings. Biochemical characterizations, combined with the analyses of MYC chromatin binding, have shown that its pleiotropic activity depends on the chromatin context and its protein–protein interactions with different cofactors. In order to determine the contribution of MYC in a certain biological condition, it would be relevant to analyze the concomitant binding of MYC and its associated proteins, in relationship to the chromatin environment. To this end, we here provide a simple method to parallel map the genome-wide binding of MYC-associated proteins, together with the chromatin profiling of multiple histone modifications. We detail the procedure to perform high-throughput ChIP-seq (HT-ChIP-seq) with a variety of biological samples. In addition, we describe simple bioinformatic steps to determine the distribution of MYC binding with respect to the chromatin context and the association of its cofactors. The described approach will permit the reproducible characterization of MYC activity in different biological contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dang CV (2013) MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 3(8). https://doi.org/10.1101/cshperspect.a014217

  2. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C (2013) Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45(10):1127–1133. https://doi.org/10.1038/ng.2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fagnocchi L, Poli V, Zippo A (2018) Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cell Mol Life Sci 75(14):2537–2555. https://doi.org/10.1007/s00018-018-2820-1

    Article  CAS  PubMed  Google Scholar 

  4. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, Miluzio A, Gaudioso G, Vaira V, Turdo A, Gaggianesi M, Chinnici A, Lipari E, Bicciato S, Bosari S, Todaro M, Zippo A (2018) MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun 9(1):1024. https://doi.org/10.1038/s41467-018-03264-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang CY, Yaswen P, Goga A, Werb Z (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526(7571):131–135. https://doi.org/10.1038/nature15260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132(5):885–896. https://doi.org/10.1242/dev.01670

    Article  CAS  PubMed  Google Scholar 

  7. Smith KN, Singh AM, Dalton S (2010) Myc represses primitive endoderm differentiation in pluripotent stem cells. Cell Stem Cell 7(3):343–354. https://doi.org/10.1016/j.stem.2010.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, Berno V, Rossi RL, Reinbold R, Endele M, Schroeder T, Rocchigiani M, Szkarlat Z, Oliviero S, Dalton S, Zippo A (2016) A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun 7:11903. https://doi.org/10.1038/ncomms11903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fagnocchi L, Mazzoleni S, Zippo A (2016) Integration of signaling pathways with the epigenetic machinery in the maintenance of stem cells. Stem Cells Int 2016:8652748. https://doi.org/10.1155/2016/8652748

    Article  PubMed  Google Scholar 

  10. Fagnocchi L, Zippo A (2017) Multiple roles of MYC in integrating regulatory networks of pluripotent stem cells. Front Cell Dev Biol 5:7. https://doi.org/10.3389/fcell.2017.00007

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sabo A, Amati B (2014) Genome recognition by MYC. Cold Spring Harb Perspect Med 4(2). https://doi.org/10.1101/cshperspect.a014191

  12. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, Rycak L, Dumay-Odelot H, Karim S, Bartkuhn M, Roels F, Wustefeld T, Fischer M, Teichmann M, Zender L, Wei CL, Sansom O, Wolf E, Eilers M (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511(7510):483–487. https://doi.org/10.1038/nature13473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM, Sun Q, Olejniczak ET, Clark T, Dey S, Lorey S, Alicie B, Howard GC, Cawthon B, Ess KC, Eischen CM, Zhao Z, Fesik SW, Tansey WP (2015) Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol Cell 58(3):440–452. https://doi.org/10.1016/j.molcel.2015.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baluapuri A, Wolf E, Eilers M (2020) Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol 21(5):255–267. https://doi.org/10.1038/s41580-020-0215-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baluapuri A, Hofstetter J, Dudvarski Stankovic N, Endres T, Bhandare P, Vos SM, Adhikari B, Schwarz JD, Narain A, Vogt M, Wang SY, Duster R, Jung LA, Vanselow JT, Wiegering A, Geyer M, Maric HM, Gallant P, Walz S, Schlosser A, Cramer P, Eilers M, Wolf E (2019) MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation. Mol Cell 74(4):674–687.e611. https://doi.org/10.1016/j.molcel.2019.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138(6):1122–1136. https://doi.org/10.1016/j.cell.2009.07.031

    Article  CAS  PubMed  Google Scholar 

  17. Tu WB, Shiah YJ, Lourenco C, Mullen PJ, Dingar D, Redel C, Tamachi A, Ba-Alawi W, Aman A, Al-Awar R, Cescon DW, Haibe-Kains B, Arrowsmith CH, Raught B, Boutros PC, Penn LZ (2018) MYC interacts with the G9a histone methyltransferase to drive transcriptional repression and tumorigenesis. Cancer Cell 34(4):579–595.e578. https://doi.org/10.1016/j.ccell.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  18. Zhuang Q, Li W, Benda C, Huang Z, Ahmed T, Liu P, Guo X, Ibanez DP, Luo Z, Zhang M, Abdul MM, Yang Z, Yang J, Huang Y, Zhang H, Huang D, Zhou J, Zhong X, Zhu X, Fu X, Fan W, Liu Y, Xu Y, Ward C, Khan MJ, Kanwal S, Mirza B, Tortorella MD, Tse HF, Chen J, Qin B, Bao X, Gao S, Hutchins AP, Esteban MA (2018) NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nat Cell Biol 20(4):400–412. https://doi.org/10.1038/s41556-018-0047-x

    Article  CAS  PubMed  Google Scholar 

  19. Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, Guttman M, Robinson J, Minie B, Chevrier N, Itzhaki Z, Blecher-Gonen R, Bornstein C, Amann-Zalcenstein D, Weiner A, Friedrich D, Meldrim J, Ram O, Cheng C, Gnirke A, Fisher S, Friedman N, Wong B, Bernstein BE, Nusbaum C, Hacohen N, Regev A, Amit I (2012) A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol Cell 47(5):810–822. https://doi.org/10.1016/j.molcel.2012.07.030

    Article  CAS  PubMed  Google Scholar 

  20. Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, Curina A, Prosperini E, Ghisletti S, Natoli G (2013) Latent enhancers activated by stimulation in differentiated cells. Cell 152(1–2):157–171. https://doi.org/10.1016/j.cell.2012.12.018

    Article  CAS  PubMed  Google Scholar 

  21. Ewels P, Magnusson M, Lundin S, Kaller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44(W1):W160–W165. https://doi.org/10.1093/nar/gkw257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu S, Grullon S, Ge K, Peng W (2014) Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. Methods Mol Biol 1150:97–111. https://doi.org/10.1007/978-1-4939-0512-6_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sessa A, Fagnocchi L, Mastrototaro G, Massimino L, Zaghi M, Indrigo M, Cattaneo S, Martini D, Gabellini C, Pucci C, Fasciani A, Belli R, Taverna S, Andreazzoli M, Zippo A, Broccoli V (2019) SETD5 regulates chromatin methylation state and preserves global transcriptional fidelity during brain development and neuronal wiring. Neuron 104(2):271–289.e213. https://doi.org/10.1016/j.neuron.2019.07.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Zippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fagnocchi, L., Zippo, A. (2021). A High-Throughput Chromatin Immunoprecipitation Sequencing Approach to Study the Role of MYC on the Epigenetic Landscape. In: Soucek, L., Whitfield, J. (eds) The Myc Gene. Methods in Molecular Biology, vol 2318. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1476-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1476-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1475-4

  • Online ISBN: 978-1-0716-1476-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics