Skip to main content

Measuring Efflux and Permeability in Mycobacteria

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2314))

Abstract

Mycobacteria are intrinsically resistant to most antimicrobials, which is generally attributed to the impermeability of their cell wall that considerably limits drug uptake. Moreover, like in other pathogenic bacteria, active efflux systems have been widely characterized from diverse mycobacterial species in laboratory conditions, showing that they can promote resistance by extruding noxious compounds prior to their reaching their intended targets. Therefore, the intracellular concentration of a given compound is determined by the balance between permeability, influx, and efflux.

Given the urgent need to discover and develop novel antimycobacterial compounds in order to design effective therapeutic strategies, the contributions to drug resistance made by the controlled permeability of the cell wall and the increased activity of efflux pumps must be determined. In this chapter, we will describe a method that allows (1) the measuring of permeability and the quantification of general efflux activity of mycobacteria, by the study of the transport (influx and efflux) of fluorescent compounds, such as ethidium bromide; and (2) the screening of compounds in search of agents that increase the permeability of the cell wall and efflux inhibitors that could restore the effectiveness of antimicrobials that are subject to efflux.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Du D, Wang-Kan X, Neuberger A et al (2018) Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16:523–539

    Article  CAS  Google Scholar 

  2. Pasipanodya JG, Gumbo T (2011) A new evolutionary and pharmacokinetic-pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs. Curr Opin Pharmacol 11:457–463

    Article  CAS  Google Scholar 

  3. Piddock LJV (2019) The 2019 Garrod lecture: MDR efflux in gram-negative bacteria-how understanding resistance led to a new tool for drug discovery. J Antimicrob Chemother 74:3128–3134

    Article  CAS  Google Scholar 

  4. De Rossi E, Aínsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52

    Article  Google Scholar 

  5. Rodrigues L, Parish T, Balganesh M et al (2017) Antituberculosis drugs: reducing efflux=increasing activity. Drug Discov Today 22:592–599

    Article  CAS  Google Scholar 

  6. Adams KN, Takaki K, Connolly LE et al (2011) Drug tolerance in replicating myco- bacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53

    Article  CAS  Google Scholar 

  7. Ramón-García S, Mick V, Dainese E et al (2012) Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 56:2074–2083

    Article  Google Scholar 

  8. Ramón-García S, Martín C, Thompson CJ et al (2009) Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother 53:3675–3682

    Article  Google Scholar 

  9. Lee RE, Hurdle JG, Liu J et al (2014) Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 20:152–158

    Article  CAS  Google Scholar 

  10. Balganesh M, Dinesh N, Sharma S et al (2012) Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother 56:2643–2651

    Article  CAS  Google Scholar 

  11. Balganesh M, Kuruppath S, Marcel N et al (2010) Rv1218c, an ABC transporter of Mycobacterium tuberculosis with implications in drug discovery. Antimicrob Agents Chemother 54:5167–5172

    Article  CAS  Google Scholar 

  12. Viveiros M, Martins M, Rodrigues L et al (2012) Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Rev Anti-Infect Ther 10:983–998

    Article  CAS  Google Scholar 

  13. Pule CM, Sampson SL, Warren RM et al (2016) Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 71:17–26

    Article  CAS  Google Scholar 

  14. Greulich KO (2004) Single molecule techniques for biomedicine and pharmacology. Curr Pharm Biotechnol 5:243–259

    Article  CAS  Google Scholar 

  15. Jernaes MW, Steen HB (1994) Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry 17:302–309

    Article  CAS  Google Scholar 

  16. Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918

    Article  CAS  Google Scholar 

  17. Blair JM, Piddock LJ (2016) How to measure export via bacterial multidrug resistance efflux pumps. mBio 7(4):e00840–16

    Article  Google Scholar 

  18. Viveiros M, Martins A, Paixão L et al (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462

    Article  CAS  Google Scholar 

  19. Ramón-García S, Martín C, Aínsa JA et al (2006) Characterization of tetracycline resistance mediated by the efflux pump tap from Mycobacterium fortuitum. J Antimicrob Chemother 57:252–259

    Article  Google Scholar 

  20. Viveiros M, Martins M, Couto I et al (2008) New methods for the identification of efflux mediated MDR bacteria, genetic assessment of regulators and efflux pump constituents, characterization of efflux systems and screening for inhibitors of efflux pumps. Curr Drug Targets 9:760–778

    Article  CAS  Google Scholar 

  21. Paixão L, Rodrigues L, Couto I et al (2009) Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J Biol Eng 3:18

    Article  Google Scholar 

  22. Rodrigues L, Ramos J, Couto I et al (2011) Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol 11:35

    Article  CAS  Google Scholar 

  23. Rodrigues L, Villellas C, Bailo R et al (2013) Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:751–757

    Article  CAS  Google Scholar 

  24. Machado D, Coelho TS, Perdigão J et al (2017) Interplay between mutations and efflux in drug resistant clinical isolates of Mycobacterium tuberculosis. Front Microbiol 8:711

    Article  Google Scholar 

  25. Rodrigues L, Machado D, Couto I et al (2012) Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Infect Genet Evol 12:695–700

    Article  CAS  Google Scholar 

  26. Ballister ER, Samanovic MI, Darwin KH (2019) Mycobacterium tuberculosis Rv2700 contributes to cell envelope integrity and virulence. J Bacteriol 201:e00228–e00219

    Article  CAS  Google Scholar 

  27. Xu W, DeJesus MA, Rücker N et al (2017) Chemical genetic interaction profiling reveals determinants of intrinsic antibiotic resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 61:e01334–e01317

    PubMed  PubMed Central  Google Scholar 

  28. Williams EA, Mba Medie F, Bosserman RE et al (2017) A nonsense mutation in Mycobacterium marinum that is suppressible by a novel mechanism. Infect Immun 85:e00653–e00616

    Article  Google Scholar 

  29. Aguilar-Pérez C, Gracia B, Rodrigues L et al (2018) Synergy between circular bacteriocin AS-48 and ethambutol against Mycobacterium tuberculosis. Antimicrob Agents Chemother 62:e00359–e00318

    Article  Google Scholar 

  30. Mori G, Orena BS, Franch C et al (2018) The EU approved antimalarial pyronaridine shows antitubercular activity and synergy with rifampicin, targeting RNA polymerase. Tuberculosis (Edinb) 112:98–109

    Article  CAS  Google Scholar 

  31. Bonnett SA, Ollinger J, Chandrasekera S et al (2016) A target-based whole cell screen approach to identify potential inhibitors of Mycobacterium tuberculosis signal peptidase. ACS Infect Dis 2:893–902

    Article  CAS  Google Scholar 

  32. Nakamura de Vasconcelos SS, Caleffi-Ferracioli KR, Hegeto LA et al (2018) Carvacrol activity & morphological changes in Mycobacterium tuberculosis. Future Microbiol 13:877–888

    Article  CAS  Google Scholar 

  33. Machado D, Pires D, Perdigão J et al (2016) Ion channel blockers as antimicrobial agents, efflux inhibitors, and enhancers of macrophage killing activity against drug resistant Mycobacterium tuberculosis. PLoS One 11:e0149326

    Article  Google Scholar 

  34. Palomino JC, Martin A, Camacho M et al (2002) Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:2720–2722

    Article  CAS  Google Scholar 

  35. Costa SS, Lopes E, Azzali E et al (2016) An experimental model for the rapid screening of compounds with potential use against mycobacteria. Assay Drug Dev Technol 14:524–534

    Article  CAS  Google Scholar 

  36. Peñuelas-Urquides K, Villarreal-Treviño L, Silva-Ramírez B et al (2013) Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units. Braz J Microbiol 44:287–289

    Article  Google Scholar 

  37. Rakhmawatie MD, Wibawa T, Lisdiyanti P et al (2019) Evaluation of crystal violet decolorization assay and resazurin microplate assay for antimycobacterial screening. Heliyon 5:e02263

    Article  Google Scholar 

  38. Franzblau SG, DeGroote MA, Cho SH et al (2012) Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinb) 92:453–488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. Rodrigues was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 795924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodrigues, L., Aínsa, J.A., Viveiros, M. (2021). Measuring Efflux and Permeability in Mycobacteria. In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics