Skip to main content

Methods for Proteomic Analyses of Mycobacteria

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2314))

  • 2587 Accesses

Abstract

The use of proteomic technologies to characterize and study the proteome of mycobacteria has provided important information in terms of function, diversity, protein–protein interactions, and host-pathogen interactions in Mycobacterium spp. There are many different mass spectrometry methodologies that can be applied to proteomics studies of mycobacteria and microorganisms in general. Sample processing and appropriate study design are critical to generating high-quality data regardless of the mass spectrometry method applied. Appropriate study design relies on statistical rigor and data curation using bioinformatics approaches that are widely applicable regardless of the organism or system studied. Sample processing, on the other hand, is often a niched process specific to the physiology of the organism or system under investigation. Therefore, in this chapter, we will provide protocols for processing mycobacterial protein samples for the specific application of Top-down and Bottom-up proteomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM (2017) Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol 13(3):922. https://doi.org/10.15252/msb.20167062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albeldas C, Ganief N, Calder B, Nakedi KC, Garnett S, Nel AJM, Blackburn JM, Soares NC (2018) Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in mycobacterium smegmatis. J Proteome 180:1–10. https://doi.org/10.1016/j.jprot.2017.10.006

    Article  CAS  Google Scholar 

  3. Hoffmann E, Machelart A, Song OR, Brodin P (2018) Proteomics of mycobacterium infection: moving towards a better understanding of pathogen-driven immunomodulation. Front Immunol 9:86. https://doi.org/10.3389/fimmu.2018.00086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parra J, Marcoux J, Poncin I, Canaan S, Herrmann JL, Nigou J, Burlet-Schiltz O, Riviere M (2017) Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm. Sci Rep 7:43682. https://doi.org/10.1038/srep43682

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kruh-Garcia NA, Wolfe LM, Chaisson LH, Worodria WO, Nahid P, Schorey JS, Davis JL, Dobos KM (2014) Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS. PLoS One 9(7):e103811. https://doi.org/10.1371/journal.pone.0103811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kruh-Garcia NA, Wolfe LM, Dobos KM (2015) Deciphering the role of exosomes in tuberculosis. Tuberculosis (Edinb) 95(1):26–30. https://doi.org/10.1016/j.tube.2014.10.010

    Article  CAS  Google Scholar 

  7. Mehaffy C, Dobos KM, Nahid P, Kruh-Garcia NA (2017) Second generation multiple reaction monitoring assays for enhanced detection of ultra-low abundance Mycobacterium tuberculosis peptides in human serum. Clin Proteomics 14:21. https://doi.org/10.1186/s12014-017-9156-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Donnelly DP, Rawlins CM, DeHart CJ, Fornelli L, Schachner LF, Lin Z, Lippens JL, Aluri KC, Sarin R, Chen B, Lantz C, Jung W, Johnson KR, Koller A, Wolff JJ, Campuzano IDG, Auclair JR, Ivanov AR, Whitelegge JP, Pasa-Tolic L, Chamot-Rooke J, Danis PO, Smith LM, Tsybin YO, Loo JA, Ge Y, Kelleher NL, Agar JN (2019) Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat Methods 16(7):587–594. https://doi.org/10.1038/s41592-019-0457-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Binz PA, Barkovich R, Beavis RC, Creasy D, Horn DM, Julian RK Jr, Seymour SL, Taylor CF, Vandenbrouck Y (2008) Guidelines for reporting the use of mass spectrometry informatics in proteomics. Nat Biotechnol 26(8):862. https://doi.org/10.1038/nbt0808-862

    Article  CAS  PubMed  Google Scholar 

  10. Martinez-Bartolome S, Deutsch EW, Binz PA, Jones AR, Eisenacher M, Mayer G, Campos A, Canals F, Bech-Serra JJ, Carrascal M, Gay M, Paradela A, Navajas R, Marcilla M, Hernaez ML, Gutierrez-Blazquez MD, Velarde LF, Aloria K, Beaskoetxea J, Medina-Aunon JA, Albar JP (2013) Guidelines for reporting quantitative mass spectrometry based experiments in proteomics. J Proteome 95:84–88. https://doi.org/10.1016/j.jprot.2013.02.026

    Article  CAS  Google Scholar 

  11. Taylor CF (2006) Minimum reporting requirements for proteomics: a MIAPE primer. Proteomics 6(Suppl 2):39–44. https://doi.org/10.1002/pmic.200600549

    Article  CAS  PubMed  Google Scholar 

  12. Taylor CF, Binz PA, Aebersold R, Affolter M, Barkovich R, Deutsch EW, Horn DM, Huhmer A, Kussmann M, Lilley K, Macht M, Mann M, Muller D, Neubert TA, Nickson J, Patterson SD, Raso R, Resing K, Seymour SL, Tsugita A, Xenarios I, Zeng R, Julian RK Jr (2008) Guidelines for reporting the use of mass spectrometry in proteomics. Nat Biotechnol 26(8):860–861. https://doi.org/10.1038/nbt0808-860

    Article  CAS  PubMed  Google Scholar 

  13. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK Jr, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJ, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR 3rd, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25(8):887–893. https://doi.org/10.1038/nbt1329

    Article  CAS  PubMed  Google Scholar 

  14. Bisson GP, Mehaffy C, Broeckling C, Prenni J, Rifat D, Lun DS, Burgos M, Weissman D, Karakousis PC, Dobos K (2012) Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. J Bacteriol 194(23):6441–6452. https://doi.org/10.1128/JB.01013-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nieto Ramirez LM, Mehaffy C, Dobos KM (2019) Protein profile of different cellular fractions from Mycobacterium tuberculosis strains after exposure to isoniazid. Data Brief 24:103953. https://doi.org/10.1016/j.dib.2019.103953

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nieto RL, Mehaffy C, Dobos KM (2016) Comparing isogenic strains of Beijing genotype Mycobacterium tuberculosis after acquisition of isoniazid resistance: a proteomics approach. Proteomics 16(9):1376–1380. https://doi.org/10.1002/pmic.201500403

    Article  CAS  Google Scholar 

  17. Nieto RL, Mehaffy C, Islam MN, Fitzgerald B, Belisle J, Prenni J, Dobos K (2018) Biochemical characterization of isoniazid-resistant Mycobacterium tuberculosis: can the analysis of clonal strains reveal novel targetable pathways? Mol Cell Proteomics 17(9):1685–1701. https://doi.org/10.1074/mcp.RA118.000821

    Article  Google Scholar 

  18. Duncan C, Jamieson FB, Troudt J, Izzo L, Bielefeldt-Ohmann H, Izzo A, Mehaffy C (2017) Whole transcriptomic and proteomic analyses of an isogenic M. tuberculosis clinical strain with a naturally occurring 15 kb genomic deletion. PLoS One 12(6):e0179996. https://doi.org/10.1371/journal.pone.0179996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mehaffy C, Hess A, Prenni JE, Mathema B, Kreiswirth B, Dobos KM (2010) Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. Proteomics 10:1966–1984. https://doi.org/10.1002/pmic.200900836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bereman MS, Beri J, Sharma V, Nathe C, Eckels J, MacLean B, MacCoss MJ (2016) An automated pipeline to monitor system performance in liquid chromatography-tandem mass spectrometry proteomic experiments. J Proteome Res 15(12):4763–4769. https://doi.org/10.1021/acs.jproteome.6b00744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bereman MS, Johnson R, Bollinger J, Boss Y, Shulman N, MacLean B, Hoofnagle AN, MacCoss MJ (2014) Implementation of statistical process control for proteomic experiments via LC MS/MS. J Am Soc Mass Spectrom 25(4):581–587. https://doi.org/10.1007/s13361-013-0824-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bielow C, Mastrobuoni G, Kempa S (2016) Proteomics quality control: quality control software for MaxQuant results. J Proteome Res 15(3):777–787. https://doi.org/10.1021/acs.jproteome.5b00780

    Article  CAS  PubMed  Google Scholar 

  23. Dogu E, Mohammad-Taheri S, Abbatiello SE, Bereman MS, MacLean B, Schilling B, Vitek O (2017) MSstatsQC: longitudinal system suitability monitoring and quality control for targeted proteomic experiments. Mol Cell Proteomics 16(7):1335–1347. https://doi.org/10.1074/mcp.M116.064774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taverner T, Karpievitch YV, Polpitiya AD, Brown JN, Dabney AR, Anderson GA, Smith RD (2012) DanteR: an extensible R-based tool for quantitative analysis of -omics data. Bioinformatics 28(18):2404–2406. https://doi.org/10.1093/bioinformatics/bts449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bourmaud A, Gallien S, Domon B (2015) A quality control of proteomic experiments based on multiple isotopologous internal standards. EuPA Open Proteom 8:16–21. https://doi.org/10.1016/j.euprot.2015.07.010

    Article  CAS  Google Scholar 

  26. Perez-Riverol Y, Alpi E, Wang R, Hermjakob H, Vizcaino JA (2015) Making proteomics data accessible and reusable: current state of proteomics databases and repositories. Proteomics 15(5–6):930–949. https://doi.org/10.1002/pmic.201400302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riffle M, Eng JK (2009) Proteomics data repositories. Proteomics 9(20):4653–4663. https://doi.org/10.1002/pmic.200900216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Demeure K, Quinton L, Gabelica V, De Pauw E (2007) Rational selection of the optimum MALDI matrix for top-down proteomics by in-source decay. Anal Chem 79(22):8678–8685. https://doi.org/10.1021/ac070849z

    Article  CAS  PubMed  Google Scholar 

  29. Guray MZ, Zheng S, Doucette AA (2017) Mass spectrometry of intact proteins reveals +98 u chemical artifacts following precipitation in acetone. J Proteome Res 16(2):889–897. https://doi.org/10.1021/acs.jproteome.6b00841

    Article  CAS  PubMed  Google Scholar 

  30. Link AJ, LaBaer J (2011) Trichloroacetic acid (TCA) precipitation of proteins. Cold Spring Harb Protoc 2011(8):993–994. https://doi.org/10.1101/pdb.prot5651

    Article  PubMed  Google Scholar 

  31. Doucette AA, Vieira DB, Orton DJ, Wall MJ (2014) Resolubilization of precipitated intact membrane proteins with cold formic acid for analysis by mass spectrometry. J Proteome Res 13(12):6001–6012. https://doi.org/10.1021/pr500864a

    Article  CAS  PubMed  Google Scholar 

  32. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143. https://doi.org/10.1016/0003-2697(84)90782-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by ATCC contract 2010-0516-0005 (a subcontract of NIH-NIAID Contract HHSN272201000027c) and ATCC contract 2016-0550-0002 (a subcontract of NIH-NIAID contract HHSN272201600013c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Dobos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mehaffy, C., Lucas, M., Kruh-Garcia, N.A., Dobos, K.M. (2021). Methods for Proteomic Analyses of Mycobacteria. In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics