Skip to main content

Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica

  • Protocol
  • First Online:
Yarrowia lipolytica

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2307))

Abstract

The oleaginous yeast Yarrowia lipolytica has emerged as an industrially relevant chassis to produce various valuable chemicals. Metabolic engineering of Y. lipolytica relies on the availability of genetic engineering tools. Existing engineering strategies for this yeast include homologous recombination, random integration, and episomal plasmid-based gene expression. CRISPR-Cas9 based genome-editing toolbox has also been developed to facilitate multiplexed gene disruption and regulation. Alternative to Cas9, the CRISPR effector Cas12a has also been adopted to perform genome engineering in multiple species. Due to its distinctive features such as short and simple crRNA structure, the ability to process its own crRNA and T-rich PAM sequence (TTTN), Cas12a holds promising potential to be developed as an efficient genome-editing tool. In this chapter, we describe the protocol to implement multiplexed genome editing in Y. lipolytica. The delivery of AsCas12a and crRNA expression via a single plasmid was described. CRISPR-Cas12a-based genome editing could expand the genetic toolbox of Y. lipolytica, whihc is complementary to the classical Cas9-based tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv 36(1):182–195

    Article  CAS  Google Scholar 

  2. Spagnuolo M et al (2018) Alternative substrate metabolism in Yarrowia lipolytica. Front Microbiol 9:1077

    Article  Google Scholar 

  3. Yaguchi A, Spagnuolo M, Blenner M (2018) Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 53:122–129

    Article  CAS  Google Scholar 

  4. Ma J et al (2020) Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform. J Ind Microbiol Biotechnol 47(9-10):845–862

    Article  CAS  Google Scholar 

  5. Blazeck J et al (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131

    Article  Google Scholar 

  6. Xu P et al (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci 113(39):10848–10853

    Article  CAS  Google Scholar 

  7. Spagnuolo M, Yaguchi A, Blenner M (2019) Oleaginous yeast for biofuel and oleochemical production. Curr Opin Biotechnol 57:73–81

    Article  CAS  Google Scholar 

  8. Markham KA et al (2018) Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc Natl Acad Sci 115(9):2096–2101

    Article  CAS  Google Scholar 

  9. Lv Y et al (2019) Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synth Biol 8(11):2514–2523

    Article  CAS  Google Scholar 

  10. Lv Y et al (2020) Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metab Eng 61:79–88

    Article  CAS  Google Scholar 

  11. Gu Y et al (2020) Refactoring Ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica. ACS Synth Biol 9(3):623–633

    Article  CAS  Google Scholar 

  12. Gu Y et al (2020) Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals. ACS Synth Biol 9(8):2096–2106

    Article  CAS  Google Scholar 

  13. Gao S et al (2017) Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production. Metab Eng 41:192–201

    Article  CAS  Google Scholar 

  14. Larroude M et al (2018) A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnol Bioeng 115(2):464–472

    Article  CAS  Google Scholar 

  15. Liu H et al (2020) Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. Bioresour Technol 317:123991

    Article  CAS  Google Scholar 

  16. Larroudé M et al (2018) Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol Adv 36(8):2150–2164

    Article  Google Scholar 

  17. Wong L et al (2017) YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab Eng Commun 5(Supplement C):68–77

    Article  Google Scholar 

  18. Schwartz CM et al (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359

    Article  CAS  Google Scholar 

  19. Schwartz C et al (2016) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol 6(3):402–409

    Article  Google Scholar 

  20. Schwartz C et al (2018) Multiplexed CRISPR activation of cryptic sugar metabolism enables Yarrowia lipolytica growth on cellobiose. Biotechnol J 13(9):1700584

    Article  Google Scholar 

  21. Schwartz C et al (2017) CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica. Biotechnol Bioeng 114(12):2896–2906

    Article  CAS  Google Scholar 

  22. Zetsche B et al (2017) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34

    Article  CAS  Google Scholar 

  23. Yang Z, Edwards H, Xu P (2020) CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metab Eng Commun 10:e00112

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Bill & Melinda Gates Foundation under grant NO. OPP1188443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, Z., Xu, P. (2021). Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica. In: Wheeldon, I., Blenner, M. (eds) Yarrowia lipolytica. Methods in Molecular Biology, vol 2307. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1414-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1414-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1413-6

  • Online ISBN: 978-1-0716-1414-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics