Skip to main content

Computerized Molecular Modeling for Discovering Promising Glycosaminoglycan Oligosaccharides that Modulate Protein Function

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2303))

Abstract

Glycosaminoglycans (GAGs) are a class of highly negatively charged polysaccharides that plays a major role in various biological processes through their interaction with hundreds of proteins. A major challenge in understanding the specific protein-GAG interaction is their structural diversity and complexity. Recently, computational approaches have been used extensively in addressing this challenge. In this chapter, we present a generally-applicable methodology termed Combinatorial Virtual Library Screening (CVLS) that can identify potential high-affinity, high-specificity sequence(s) binding to a suitable GAG-binding protein from large GAG combinatorial libraries of various lengths and structural patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu D, Esko JD (2014) Demystifying heparan sulfate-protein interactions. Annu Rev Biochem 83:129–157

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ricard-Blum S, Lisacek F (2017) Glycosaminoglycanomics: where we are. Glycoconj J 34:339–349

    Article  CAS  PubMed  Google Scholar 

  3. Blow N (2009) A spoonful of sugar. Nature 457:617–620

    Article  CAS  PubMed  Google Scholar 

  4. Dementiev A, Petitou M, Herbert J-M, Gettins PGW (2004) The ternary complex of antithrombin–anhydrothrombin–heparin reveals the basis of inhibitor selectivity. Nat Struct Mol Biol 11:863–867

    Article  CAS  PubMed  Google Scholar 

  5. Olson ST, Björk I (1991) Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin–thrombin reaction. Elucidation from salt concentration effects. J Biol Chem 266:6353–6364

    Article  CAS  PubMed  Google Scholar 

  6. Sankaranarayanan NV, Desai UR (2014) Toward a robust computational screening strategy for identifying glycosaminoglycan sequences that display high specificity for target proteins. Glycobiology 24:1323–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cardin AD, Weintraub HJR (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arterioscler Thromb Vasc Biol 9:21–32

    CAS  Google Scholar 

  8. Hileman RE, Fromm JR, Weiler JM, Linhardt RJ (1998) Glycosaminoglycan–protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. BioEssays 20:156–167

    Article  CAS  PubMed  Google Scholar 

  9. Margalit H, Fischer N, Ben-Sasson SA (1993) Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem 268:19228–19231

    Article  CAS  PubMed  Google Scholar 

  10. Sobel M, Soler DF, Kermonde JC, Harris RB (1992) Localization and characterization of a heparin binding domain peptide of human von willebrand factor. J Biol Chem 267:8857–8862

    Article  CAS  PubMed  Google Scholar 

  11. Bitomsky W, Wade RC (1999) Docking of glycosaminoglycans to heparin-binding proteins: validation for afgf, bfgf, and antithrombin and application to il-8. J Am Chem Soc 121:3004–3013

    Article  CAS  Google Scholar 

  12. Gandhi NS, Coombe DR, Mancera RL (2008) Platelet endothelial cell adhesion molecule 1 (pecam-1) and its interactions with glycosaminoglycans: 1. Molecular modeling studies. Biochemistry 47:4851–4862

    Article  CAS  PubMed  Google Scholar 

  13. Krieger E, Geretti E, Brandner B, Goger B, Wells TN, Kungl AJ (2004) A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations. Proteins 54:768–775

    Article  CAS  PubMed  Google Scholar 

  14. Raghuraman A, Mosier PD, Desai UR (2006) Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). J Med Chem 49:3553–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raghuraman A, Mosier PD, Desai UR (2010) Understanding dermatan sulfate–heparin co-factor ii interaction through virtual library screening. ACS Med Chem Lett 1:281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rogers CJ, Clark PM, Tully SE, Abrol R, Garcia C, Goddard WA III, Hsieh-Wilson LC (2011) Elucidating glycosaminoglycan–protein–protein interactions using carbohydrate microarray and computational approaches. Proc Natl Acad Sci U S A 108:9747–9752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cole JC, Nissink JWM, Taylor R (2005) Protein–ligand docking and virtual screening with gold. In: Alvarez J, Shoichet B (eds) Virtual screening in drug discovery. Taylor & Francis CRC Press, Boca Raton, FL, pp 379–416

    Chapter  Google Scholar 

  18. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791

    Article  CAS  Google Scholar 

  19. Dominguez C, Boelens R, Bonvin AMMJ (2003) Haddock: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  PubMed  Google Scholar 

  20. Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) Development and validation of a modular, extensible docking program: Dock 5. J Comput Aided Mol Des 20(10-11):601–619

    Article  CAS  PubMed  Google Scholar 

  21. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The cluspro web server for protein-protein docking. Nat Protoc 12(2):255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li W, Johnson DJD, Esmon CT, Huntington JA (2004) Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 11:857–862

    Article  CAS  PubMed  Google Scholar 

  23. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  24. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482

    Article  CAS  PubMed  Google Scholar 

  25. Mulloy B, Forster MJ (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10:1147–1156

    Article  CAS  PubMed  Google Scholar 

  26. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) Glycam06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cremer D, Pople JA (1975) A general definition of ring puckering. J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  28. Forster MJ, Mulloy B (1993) Molecular dynamics study of iduronate ring conformations. Biopolymers 33:575–588

    Article  CAS  Google Scholar 

  29. Rao VSR, Qasba PK, Balaji PV, Chandrasekaran R (1998) Conformation of carbohydrates. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  30. Pol-Fachin L, Verli H (2008) Depiction of the forces participating in the 2-o-sulfo-α-l-iduronic acid conformational preference in heparin sequences in aqueous solutions. Carbohydr Res 343:1435–1445

    Article  CAS  PubMed  Google Scholar 

  31. Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW (1997) The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A 94:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson DJD, Li W, Adams TE, Huntington JA (2006) Antithrombin–s195a factor xa–heparin structure reveals the allosteric mechanism of antithrombin activation. EMBO J 25:2029–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCoy AJ, Pei XY, Skinner R, Abrahams J-P, Carrell RW (2003) Structure of β-antithrombin and the effect of glycosylation on antithrombin's heparin affinity and activity. J Mol Biol 326:823–833

    Article  CAS  PubMed  Google Scholar 

  34. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  CAS  PubMed  Google Scholar 

  35. Carter WJ, Cama E, Huntington JA (2005) Crystal structure of thrombin bound to heparin. J Biol Chem 280:2745–2749

    Article  CAS  PubMed  Google Scholar 

  36. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibrobalst growth factor. Science 271:1116–1120

    Article  CAS  PubMed  Google Scholar 

  37. Namachivayam K, Coffing HP, Sankaranarayanan NV, Jin Y, MohanKumar K, Frost BL, Blanco CL, Patel AL, Meier PP, Garzon SA, Desai UR et al (2015) Transforming growth factor-beta2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans. Am J Physiol Gastrointest Liver Physiol 309:G171–G180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sankaranarayanan NV, Bi Y, Kuberan B, Desai UR (2020) Combinatorial virtual library screening analysis of antithrombin binding oligosaccharide motif generation by heparan sulfate 3-o-sulfotransferase 1. Comput Struct Biotechnol J 18:933–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sankaranarayanan NV, Nagarajan B, Desai UR (2018) So you think computational approaches to understanding glycosaminoglycan-protein interactions are too dry and too rigid? Think again! Curr Opin Struct Biol 50:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sankaranarayanan NV, Strebel TR, Boothello RS, Sheerin K, Raghuraman A, Sallas F, Mosier PD, Watermeyer ND, Oscarson S, Desai UR (2017) A hexasaccharide containing rare 2-o-sulfate-glucuronic acid residues selectively activates heparin cofactor ii. Angew Chem Int Ed Engl 56:2312–2317

    Article  CAS  Google Scholar 

  41. Stouch TR (2012) Looking forward into the next 25 years: the 25th anniversary issue of the journal of computer-aided molecular design. J Comput Aided Mol Des 26:1

    Article  CAS  PubMed  Google Scholar 

  42. Mulloy B, Forster MJ, Jones C, Davies DB (1993) N.M.R. and molecular-modelling studies of the solution conformation of heparin. Biochem J 293:849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uciechowska-Kaczmarzyk U, Chauvot de Beauchene I, Samsonov SA (2019) Docking software performance in protein-glycosaminoglycan systems. J Mol Graph Model 90:42–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants HL090586, HL107152 and CA241951 from the National Institutes of Health and by Award Number S10RR027411 from the National Center For Research Resources. We thank Drs. Philip Mosier (VCU) and Aurijit Sarkar (High Point University) for making Figs. 2, 3 and 5. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center For Research Resources or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehru Viji Sankaranarayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sankaranarayanan, N.V., Desai, U. (2022). Computerized Molecular Modeling for Discovering Promising Glycosaminoglycan Oligosaccharides that Modulate Protein Function. In: Balagurunathan, K., Nakato, H., Desai, U., Saijoh, Y. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 2303. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1398-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1398-6_41

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1397-9

  • Online ISBN: 978-1-0716-1398-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics