Skip to main content

Aggrecan: Approaches to Study Biophysical and Biomechanical Properties

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2303))

  • 1915 Accesses

Abstract

Aggrecan, the most abundant extracellular proteoglycan in cartilage (~35% by dry weight), plays a key role in the biophysical and biomechanical properties of cartilage. Here, we review several approaches based on atomic force microscopy (AFM) to probe the physical, mechanical, and structural properties of aggrecan at the molecular level. These approaches probe the response of aggrecan over a wide time (frequency) scale, ranging from equilibrium to impact dynamic loading. Experimental and theoretical methods are described for the investigation of electrostatic and fluid-solid interactions that are key mechanisms underlying the biomechanical and physicochemical functions of aggrecan. Using AFM-based imaging and nanoindentation, ultrastructural features of aggrecan are related to its mechanical properties, based on aggrecans harvested from human vs bovine, immature vs mature, and healthy vs osteoarthritic cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maroudas A (1980) Physical chemistry of articular cartilage and the intervertebral disc. Joints Synovial Fluid 2:239–291

    Article  Google Scholar 

  2. Hardingham TE, Fosang AJ (1992) Proteoglycans: many forms and many functions. FASEB J 6(3):861–870

    Article  CAS  PubMed  Google Scholar 

  3. Buschmann MD, Grodzinsky AJ (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 117(2):179–192

    Article  CAS  PubMed  Google Scholar 

  4. Eisenberg SR, Grodzinsky AJ (1985) Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J Orthop Res 3(2):148–159

    Article  CAS  PubMed  Google Scholar 

  5. Bayliss MT, Ali SY (1978) Age-related changes in the composition and structure of human articular-cartilage proteoglycans. Biochem J 176(3):683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deutsch AJ, Midura RJ, Plaas AH (1995) Structure of chondroitin sulfate on aggrecan isolated from bovine tibial and costochondral growth plates. J Orthop Res 13(2):230–239

    Article  CAS  PubMed  Google Scholar 

  7. Bay-Jensen A-C, Hoegh-Madsen S, Dam E, Henriksen K, Sondergaard BC, Pastoureau P et al (2010) Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int 30(4):435–442

    Article  PubMed  Google Scholar 

  8. Nia HT, Munn LL, Jain RK Physical traits of cancer. Science 370(6516):543–545

    Google Scholar 

  9. Nia HT, Liu H, Seano G, Datta M, Jones D, Rahbari N et al (2017) Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 1:0004

    Article  CAS  Google Scholar 

  10. Seano G, Nia HT, Emblem KE, Datta M, Ren J, Krishnan S et al (2019) Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat Biomed Eng 3(3):230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nia HT, Datta M, Seano G, Huang P, Munn LL, Jain RK (2018) Quantifying solid stress and elastic energy from excised or in situ tumors. Nat Protoc 13(5):1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV et al (2013) Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 4:2516

    Article  PubMed  CAS  Google Scholar 

  14. Rahbari NN, Kedrin D, Incio J, Liu H, Ho WW, Nia HT et al (2016) Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med 8(360):360ra135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Han B, Nia HT, Wang C, Chandrasekaran P, Li Q, Chery DR et al (2017) AFM-nanomechanical test: an interdisciplinary tool that links the understanding of cartilage and meniscus biomechanics, osteoarthritis degeneration, and tissue engineering. ACS Biomater Sci Eng 3(9):2033–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roughley PJ, White RJ (1980) Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem 255(1):217–224

    Article  CAS  PubMed  Google Scholar 

  17. Ng L, Grodzinsky AJ, Patwari P, Sandy J, Plaas A, Ortiz C (2003) Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J Struct Biol 143(3):242–257

    Article  CAS  PubMed  Google Scholar 

  18. Buckwalter JA, Rosenberg LC (1982) Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. J Biol Chem 257(16):9830–9839

    Article  CAS  PubMed  Google Scholar 

  19. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883(2):173–177

    Article  CAS  PubMed  Google Scholar 

  20. Kopesky PW, Lee HY, Vanderploeg EJ, Kisiday JD, Frisbie DD, Plaas AH et al (2010) Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. Matrix Biol 29(5):427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee HY, Kopesky PW, Plaas A, Sandy J, Kisiday J, Frisbie D et al (2010) Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage. Osteoarthr Cartil 18(11):1477–1486

    Article  Google Scholar 

  22. Lee HY, Han L, Roughley PJ, Grodzinsky AJ, Ortiz C (2013) Age-related nanostructural and nanomechanical changes of individual human cartilage aggrecan monomers and their glycosaminoglycan side chains. J Struct Biol 181(3):264–273

    Article  CAS  PubMed  Google Scholar 

  23. Dean D, Han L, Ortiz C, Grodzinsky AJ (2005) Nanoscale conformation and compressibility of cartilage aggrecan using microcontact printing and atomic force microscopy. Macromolecules 38(10):4047–4049

    Article  CAS  Google Scholar 

  24. Dean D, Han L, Grodzinsky AJ, Ortiz C (2006) Compressive nanomechanics of opposing aggrecan macromolecules. J Biomech 39(14):2555–2565

    Article  PubMed  Google Scholar 

  25. Seog J, Dean D, Plaas AHK, Wong-Palms S, Grodzinsky AJ, Ortiz C (2002) Direct measurement of glycosaminoglycan intermolecular interactions via high-resolution force spectroscopy. Macromolecules 35(14):5601–5615

    Article  CAS  Google Scholar 

  26. Seog J, Dean D, Rolauffs B, Wu T, Genzer J, Plaas AH et al (2005) Nanomechanics of opposing glycosaminoglycan macromolecules. J Biomech 38(9):1789–1797

    Article  PubMed  Google Scholar 

  27. Dean D (2005) Modeling and measurement of intermolecular interaction forces between cartilage. ECM macromolecules. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  28. Han L, Dean D, Ortiz C, Grodzinsky AJ (2007) Lateral nanomechanics of cartilage aggrecan macromolecules. Biophys J 92(4):1384–1398

    Article  CAS  PubMed  Google Scholar 

  29. Han L, Dean D, Daher LA, Grodzinsky AJ, Ortiz C (2008) Cartilage aggrecan can undergo self-adhesion. Biophys J 95(10):4862–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilbur JL, Kumar A, Kim E, Whitesides GM (1994) Microfabrication by microcontact printing of self-assembled monolayers. Adv Mater 6(7–8):600–604

    Article  CAS  Google Scholar 

  31. Nia HT, Bozchalooi IS, Li Y, Han L, Hung HH, Frank E et al (2013) High-bandwidth AFM-based rheology reveals that cartilage is most sensitive to high loading rates at early stages of impairment. Biophys J 104(7):1529–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han L (2007) Nanomechanics of cartilage extracellular matrix and macromolecules. Cambridge, MA, Department of Materials Science and Engineering, Massachusetts Institute of Technology

    Google Scholar 

  33. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  34. Nia HT, Han L, Li Y, Ortiz C, Grodzinsky A (2011) Poroelasticity of cartilage at the nanoscale. Biophys J 101(9):2304–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee B, Han L, Frank EH, Grodzinsky AJ, Ortiz C (2015) Dynamic nanomechanics of individual bone marrow stromal cells and cell-matrix composites during chondrogenic differentiation. J Biomech 48(1):171–175

    Article  PubMed  Google Scholar 

  36. Nia HT, Han L, Bozchalooi IS, Roughley P, Youcef-Toumi K, Grodzinsky AJ, Ortiz C (2015) Aggrecan nanoscale solid fluid interactions are a primary determinant of cartilage dynamic mechanical properties. ACS Nano 9(3):2614–2625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nia HT, Bozchalooi IS, Youcef-Toumi K, Ortiz C, Grodzinsky AJ, E. Frank (2013) High-frequency rheology system. US Patent 8,516,610

    Google Scholar 

  38. Nia HT (2013) Nanomechanics of cartilage at the matrix and molecular levels. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  39. Azadi M, Nia HT, Gauci SJ, Ortiz C, Fosang AJ, Grodzinsky AJ (2016) Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse. J Biomech 49(9):1634–1640

    Article  PubMed  Google Scholar 

  40. Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Ortiz C (2019) Decorin regulates the aggrecan network integrity and biomechanical functions of cartilage extracellular matrix. ACS Nano 13(10):11320–11333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Connizzo BK, Grodzinsky AJ (2017) Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology. J Biomech 54:11–18

    Article  PubMed  PubMed Central  Google Scholar 

  42. Oftadeh R, Connizzo BK, Nia HT, Ortiz C, Grodzinsky AJ (2018) Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: application to tendon and skin biophysics. Acta Biomater 70:249–259

    Article  PubMed  Google Scholar 

  43. Sellon JB, Azadi M, Oftadeh R, Nia HT, Ghaffari R, Grodzinsky AJ, Freeman DM (2019) Nanoscale poroelasticity of the tectorial membrane determines hair bundle deflections. Phys Rev Lett 122(2):028101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dean D, Seog J, Ortiz C, Grodzinsky AJ (2003) Molecular-level theoretical model for electrostatic interactions within polyelectrolyte brushes: applications to charged glycosaminoglycans. Langmuir 19(13):5526–5539

    Article  CAS  Google Scholar 

  45. Cohen B, Lai WM, Mow VC (1998) A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 120(4):491–496

    Article  CAS  PubMed  Google Scholar 

  46. Grodzinsky AJ (2011) Fields, forces, and flows in biological systems. Garland Science, New York, NY, pp 139–173

    Book  Google Scholar 

  47. Nia HT, Han L, Soltani I, Youcef-Toumi K, Grodzinsky A, Ortiz C (2013) Frequency-dependent nanomechanical behavior of aggrecan demonstrates that aggrecan is the dominant constituent responsible for the frequency dependence of cartilage poroelasticity. Orthopedic Research Society, San Antonio, TX

    Google Scholar 

Download references

Acknowledgments

Supported by Whitaker Foundation Fellowship, National Science Foundation (grant CMMI-0758651), and National Institutes of Health (grant AR060331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Grodzinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nia, H.T., Ortiz, C., Grodzinsky, A. (2022). Aggrecan: Approaches to Study Biophysical and Biomechanical Properties. In: Balagurunathan, K., Nakato, H., Desai, U., Saijoh, Y. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 2303. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1398-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1398-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1397-9

  • Online ISBN: 978-1-0716-1398-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics