Skip to main content

Preparing Membrane Proteins for Simulation Using CHARMM-GUI

  • Protocol
  • First Online:
Structure and Function of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2302))

Abstract

Molecular dynamics simulations of membrane proteins have grown dramatically in the last 20 years. Running these simulations first requires embedding the protein’s three-dimensional structure in a lipid bilayer of a suitable composition, one that resembles its native environment. This step is far from trivial, especially for modeling heterogeneous mixtures of lipids. CHARMM-GUI, a webserver for simulation system preparation greatly simplifies this step, allowing for the construction of complex heterogeneous and/or asymmetric membranes. Here, we demonstrate how to use CHARMM-GUI to build the membrane for the outer-membrane protein BamA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almen MS, Nordstrom KJ, Fredriksson R, Schioth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  3. Hidalgo P, MacKinnon R (1995) Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268:307–310

    Article  CAS  PubMed  Google Scholar 

  4. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542(Pt 1):3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rahman KS, Cui G, Harvey SC, McCarty NA (2013) Modeling the conformational changes underlying channel opening in CFTR. PLoS One 8(9):e74574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fairman JW, Noinaj N, Buchanan SK (2011) The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21(4):523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gadsby DC (2007) Ion pumps made crystal clear. Nature 450:957–959

    Article  CAS  PubMed  Google Scholar 

  8. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(7447):137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cojocaru V, Balali-Mood K, Sansom MS, Wade RC (2011) Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7(8):e1002152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jordan JD, Landau EM, Iyengar R (2000) Signaling networks: the origins of cellular multitasking. Cell 103:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hunter T (2000) Signaling–2000 and beyond. Cell 100:113–127

    Article  CAS  PubMed  Google Scholar 

  12. Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290(5491):481–486

    Article  CAS  PubMed  Google Scholar 

  13. Khademi S, O’Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305(5690):1587–1594

    Article  CAS  PubMed  Google Scholar 

  14. Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419:35–42

    Article  CAS  PubMed  Google Scholar 

  15. Dong J, Yang G, McHaourab HS (2005) Structural basis of energy transduction in the transport cycle of MsbA. Science 308:1023–1028

    Article  CAS  PubMed  Google Scholar 

  16. Elston T, Wang H, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510–513

    Article  CAS  PubMed  Google Scholar 

  17. Medley QG, Kedersha N, O’Brien S, Tian Q, Schlossman SF, Streuli M, Anderson P (1996) Characterization of GMP-17, a granule membrane protein that moves to the plasma membrane of natural killer cells following target cell recognition. Proc Natl Acad Sci 93:685–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brooks JM, Lee SP, Leese AM, Thomas WA, Rowe M, Rickinson AB (2009) Cyclical expression of EBV latent membrane protein 1 in EBV-transformed B cells underpins heterogeneity of epitope presentation and CD8+ T cell recognition. J Immunol 182(4):1919–1928

    Article  CAS  PubMed  Google Scholar 

  19. Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2(9):e880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    Article  CAS  PubMed  Google Scholar 

  21. Earl LA, Falconieri V, Milne JL, Subramaniam S (2017) Cryo-EM: beyond the microscope. Curr Opin Struct Biol 46:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garavito RM, Picot D, Loll PJ (1996) Strategies for crystallizing membrane proteins. J Bioenerg Biomembr 28:13–27

    Article  CAS  PubMed  Google Scholar 

  23. Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol 15(4):423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee AG (2011) Biological membranes: the importance of molecular detail. Trends Biochem Sci 36(9):493–500

    Article  CAS  PubMed  Google Scholar 

  25. Landreh M, Marklund EG, Uzdavinys P, Degiacomi MT, Coincon M, Gault J, Gupta K, Liko I, Benesch JL, Drew D, Robinson CV (2017) Integrating mass spectrometry with MD simulations reveals the role of lipids in Na(+)/H(+) antiporters. Nat Commun 8:13993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dawaliby R, Trubbia C, Delporte C, Masureel M, Antwerpen PV, Kobilka BK, Govaerts C (2016) Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol 12:35–39

    Article  CAS  PubMed  Google Scholar 

  27. Dowhan W, Bogdanov M (2011) Lipid-protein interactions as determinants of membrane protein structure and function. Biochem Soc Trans 39(3):767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vigh L, Escriba PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horvath I, Harwood JL (2005) The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog Lipid Res 44(5):303–344

    Article  CAS  PubMed  Google Scholar 

  29. Saeedimasine M, Montanino A, Kleiven S, Villa A (2019) Role of lipid composition on the structural and mechanical features of axonal membranes: a molecular simulation study. Sci Rep 9(1):8000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

    Article  CAS  PubMed  Google Scholar 

  31. Brooks BR, REB BDO, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217

    Article  CAS  Google Scholar 

  32. Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W, Dong C (2016) Structural basis of outer membrane protein insertion by the BAM complex. Nature 531(7592):64–69

    Article  CAS  PubMed  Google Scholar 

  33. Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y (2016) Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 23(3):192–196

    Article  CAS  PubMed  Google Scholar 

  34. Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, Ashcroft AE, Radford SE, Ranson NA (2016) Lateral opening in the intact beta-barrel assembly machinery captured by cryo-EM. Nat Commun 7:12865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bakelar J, Buchanan SK, Noinaj N (2016) The structure of the β-barrel assembly machinery complex. Science 351(6269):180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK (2013) Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 501(7467):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell DS, Westbrook JD, Woo J, Young J, Zardecki C, Berman HM, Bourne PE, Burley SK (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43(Database issue):D345–D356

    Article  CAS  PubMed  Google Scholar 

  39. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22(5):623–625

    Article  CAS  PubMed  Google Scholar 

  40. Ali MH, Imperiali B (2005) Protein oligomerization: how and why. Bioorg Med Chem 13(17):5013–5020

    Article  CAS  PubMed  Google Scholar 

  41. Protein complex oligomerization. https://www.ebi.ac.uk/QuickGO/term/GO:0051259. Accessed 14 Oct 2004

  42. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97(1):50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pandit KR, Klauda JB (2012) Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. Biochim Biophys Acta 1818(5):1205–1210

    Article  CAS  PubMed  Google Scholar 

  44. Lind TK, Wacklin H, Schiller J, Moulin M, Haertlein M, Pomorski TG, Cardenas M (2015) Formation and characterization of supported lipid bilayers composed of hydrogenated and deuterated Escherichia coli lipids. PLoS One 10(12):e0144671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01-GM123169). Computational resources were provided through the Extreme Science and Engineering Discovery Environment (XSEDE; TG-MCB130173), which is supported by NSF Grant ACI-1548562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Gumbart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Y., Liu, J., Gumbart, J.C. (2021). Preparing Membrane Proteins for Simulation Using CHARMM-GUI. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics