Skip to main content

Mouse Models of Liver Fibrosis

  • Protocol
  • First Online:
Myofibroblasts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2299))

Abstract

Liver fibrosis is defined as excessive accumulation of extracellular matrix, and results from maladaptive wound healing processes that occur in response to chronic liver injury and inflammation. The main etiologies of liver fibrosis include nonalcoholic fatty liver disease (NAFLD), chronic viral hepatitis, as well as alcoholic and cholestatic liver disease. In patients, liver fibrosis typically develops over several decades and can progress to cirrhosis, and liver failure due to replacement of functional liver tissue with scar tissue. Additionally, advanced fibrosis and cirrhosis are associated with an increased risk for the development of hepatocellular carcinoma. On a cellular level, hepatic fibrosis is mediated by activated hepatic stellate cells, the primary fibrogenic cell type of the liver. Murine models are employed to recapitulate, understand, and therapeutically target mechanisms of fibrosis and hepatic stellate cell activation. Here, we summarize different mouse models of liver fibrosis focusing on the most commonly used models of toxic, biliary, and metabolically induced liver fibrosis, triggered by treatment with carbon tetrachloride (CCl4), thioacetamide (TAA), bile duct ligation (BDL), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and high-fat diets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V, Castellanos M, Aller-de la Fuente R, Metwally M, Eslam M, Gonzalez-Fabian L, Alvarez-Quinones Sanz M, Conde-Martin AF, De Boer B, McLeod D, Hung Chan AW, Chalasani N, George J, Adams LA, Romero-Gomez M (2018) Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-National Cohort Study. Gastroenterology 155(443–457):e417. https://doi.org/10.1053/j.gastro.2018.04.034

    Article  Google Scholar 

  2. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Keach JC, Lafferty HD, Stahler A, Haflidadottir S, Bendtsen F (2015) Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149(389–397):e310. https://doi.org/10.1053/j.gastro.2015.04.043

    Article  Google Scholar 

  3. Ellis EL, Mann DA (2012) Clinical evidence for the regression of liver fibrosis. J Hepatol 56:1171–1180. https://doi.org/10.1016/j.jhep.2011.09.024

    Article  PubMed  Google Scholar 

  4. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14:397–411. https://doi.org/10.1038/nrgastro.2017.38

    Article  CAS  PubMed  Google Scholar 

  5. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823. https://doi.org/10.1038/ncomms3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Minicis S, Seki E, Uchinami H, Kluwe J, Zhang Y, Brenner DA, Schwabe RF (2007) Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 132:1937–1946. https://doi.org/10.1053/j.gastro.2007.02.033

    Article  CAS  PubMed  Google Scholar 

  7. Sancho-Bru P, Bataller R, Gasull X, Colmenero J, Khurdayan V, Gual A, Nicolas JM, Arroyo V, Gines P (2005) Genomic and functional characterization of stellate cells isolated from human cirrhotic livers. J Hepatol 43:272–282. https://doi.org/10.1016/j.jhep.2005.02.035

    Article  CAS  PubMed  Google Scholar 

  8. Hillebrandt S, Goos C, Matern S, Lammert F (2002) Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfib1 on chromosome 15. Gastroenterology 123:2041–2051. https://doi.org/10.1053/gast.2002.37069

    Article  CAS  PubMed  Google Scholar 

  9. Shi Z, Wakil AE, Rockey DC (1997) Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci U S A 94:10663–10668. https://doi.org/10.1073/pnas.94.20.10663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Nieuwerk CM, Groen AK, Ottenhoff R, van Wijland M, van den Bergh Weerman MA, Tytgat GN, Offerhaus JJ, Oude Elferink RP (1997) The role of bile salt composition in liver pathology of mdr2 (−/−) mice: differences between males and females. J Hepatol 26:138–145. https://doi.org/10.1016/s0168-8278(97)80020-7

    Article  PubMed  Google Scholar 

  11. Mederacke I, Dapito DH, Affo S, Uchinami H, Schwabe RF (2015) High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc 10:305–315. https://doi.org/10.1038/nprot.2015.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delire B, Starkel P, Leclercq I (2015) Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J Clin Transl Hepatol 3:53–66. https://doi.org/10.14218/JCTH.2014.00035

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim YO, Popov Y, Schuppan D (2017) Optimized mouse models for liver fibrosis. Methods Mol Biol 1559:279–296. https://doi.org/10.1007/978-1-4939-6786-5_19

    Article  CAS  PubMed  Google Scholar 

  14. Wallace MC, Hamesch K, Lunova M, Kim Y, Weiskirchen R, Strnad P, Friedman SL (2015) Standard operating procedures in experimental liver research: thioacetamide model in mice and rats. Lab Anim 49:21–29. https://doi.org/10.1177/0023677215573040

    Article  CAS  PubMed  Google Scholar 

  15. Yeh CN, Maitra A, Lee KF, Jan YY, Chen MF (2004) Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating the multi-stage progression of human cholangiocarcinoma. Carcinogenesis 25:631–636. https://doi.org/10.1093/carcin/bgh037

    Article  CAS  PubMed  Google Scholar 

  16. Trauner M, Fickert P, Wagner M (2007) MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 27:77–98. https://doi.org/10.1055/s-2006-960172

    Article  CAS  PubMed  Google Scholar 

  17. Meerman L, Koopen NR, Bloks V, Van Goor H, Havinga R, Wolthers BG, Kramer W, Stengelin S, Muller M, Kuipers F, Jansen PL (1999) Biliary fibrosis associated with altered bile composition in a mouse model of erythropoietic protoporphyria. Gastroenterology 117:696–705. https://doi.org/10.1016/s0016-5085(99)70464-6

    Article  CAS  PubMed  Google Scholar 

  18. Fickert P, Stoger U, Fuchsbichler A, Moustafa T, Marschall HU, Weiglein AH, Tsybrovskyy O, Jaeschke H, Zatloukal K, Denk H, Trauner M (2007) A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 171:525–536. https://doi.org/10.2353/ajpath.2007.061133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt NM, van Roon MA et al (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75:451–462. https://doi.org/10.1016/0092-8674(93)90380-9

    Article  CAS  PubMed  Google Scholar 

  20. Itoh M, Suganami T, Nakagawa N, Tanaka M, Yamamoto Y, Kamei Y, Terai S, Sakaida I, Ogawa Y (2011) Melanocortin 4 receptor-deficient mice as a novel mouse model of nonalcoholic steatohepatitis. Am J Pathol 179:2454–2463. https://doi.org/10.1016/j.ajpath.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trak-Smayra V, Paradis V, Massart J, Nasser S, Jebara V, Fromenty B (2011) Pathology of the liver in obese and diabetic Ob/Ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol 92:413–421. https://doi.org/10.1111/j.1365-2613.2011.00793.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Asgharpour A, Cazanave SC, Pacana T, Seneshaw M, Vincent R, Banini BA, Kumar DP, Daita K, Min HK, Mirshahi F, Bedossa P, Sun X, Hoshida Y, Koduru SV, Contaifer D Jr, Warncke UO, Wijesinghe DS, Sanyal AJ (2016) A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol 65:579–588. https://doi.org/10.1016/j.jhep.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujii M, Shibazaki Y, Wakamatsu K, Honda Y, Kawauchi Y, Suzuki K, Arumugam S, Watanabe K, Ichida T, Asakura H, Yoneyama H (2013) A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol 46:141–152. https://doi.org/10.1007/s00795-013-0016-1

    Article  CAS  PubMed  Google Scholar 

  24. Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, Miles L, Miles MV, Balistreri WF, Woods SC, Seeley RJ (2010) High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52:934–944. https://doi.org/10.1002/hep.23797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, Masuoko H, Gores G (2011) Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 301:G825–G834. https://doi.org/10.1152/ajpgi.00145.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA (2008) Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol 295:G987–G995. https://doi.org/10.1152/ajpgi.90272.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Zheng Z, Caviglia JM, Corey KE, Herfel TM, Cai B, Masia R, Chung RT, Lefkowitch JH, Schwabe RF, Tabas I (2016) Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab 24:848–862. https://doi.org/10.1016/j.cmet.2016.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Machado MV, Michelotti GA, Xie G, Almeida Pereira T, Boursier J, Bohnic B, Guy CD, Diehl AM (2015) Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS One 10:e0127991. https://doi.org/10.1371/journal.pone.0127991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei G, An P, Vaid KA, Nasser I, Huang P, Tan L, Zhao S, Schuppan D, Popov YV (2020) Comparison of murine steatohepatitis models identifies a dietary intervention with robust fibrosis, ductular reaction, and rapid progression to cirrhosis and cancer. Am J Physiol Gastrointest Liver Physiol 318:G174–G188. https://doi.org/10.1152/ajpgi.00041.2019

    Article  CAS  PubMed  Google Scholar 

  30. Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y, Stemmer K, Ringelhan M, Simonavicius N, Egger M, Wohlleber D, Lorentzen A, Einer C, Schulz S, Clavel T, Protzer U, Thiele C, Zischka H, Moch H, Tschop M, Tumanov AV, Haller D, Unger K, Karin M, Kopf M, Knolle P, Weber A, Heikenwalder M (2014) Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26:549–564. https://doi.org/10.1016/j.ccell.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  31. Constandinou C, Henderson N, Iredale JP (2005) Modeling liver fibrosis in rodents. Methods Mol Med 117:237–250. https://doi.org/10.1385/1-59259-940-0:237

    Article  PubMed  Google Scholar 

  32. Popov Y, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, Lee J, Dieterich W, Melino G, Schuppan D (2011) Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology 140:1642–1652. https://doi.org/10.1053/j.gastro.2011.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13:1324–1332. https://doi.org/10.1038/nm1663

    Article  CAS  PubMed  Google Scholar 

  34. Mells JE, Fu PP, Kumar P, Smith T, Karpen SJ, Anania FA (2015) Saturated fat and cholesterol are critical to inducing murine metabolic syndrome with robust nonalcoholic steatohepatitis. J Nutr Biochem 26:285–292. https://doi.org/10.1016/j.jnutbio.2014.11.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Schwabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ravichandra, A., Schwabe, R.F. (2021). Mouse Models of Liver Fibrosis. In: Hinz, B., Lagares, D. (eds) Myofibroblasts. Methods in Molecular Biology, vol 2299. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1382-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1382-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1381-8

  • Online ISBN: 978-1-0716-1382-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics