Skip to main content

Co-immunoprecipitation Assay for Blue Light-Dependent Protein Interactions in Plants

  • Protocol
  • First Online:
Plant Photomorphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2297))

Abstract

Co-immunoprecipitation (CoIP) assay has been used as a powerful and routine technique to detect in vivo protein-protein interactions. Not only can it probe stable interactions, but also it is applicable for semiquantitative and inducible protein associations. Here we describe the protocol for detecting blue light-dependent protein interactions, particularly for blue light receptor cryptochrome-mediated complex formation. In addition, we present some notes which may be helpful for common Co-IP study as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Identification of associated proteins by coimmunoprecipitation (2005) Nat Methods 2(6):475–476

    Article  Google Scholar 

  2. Lin JS, Lai EM (2017) Protein-protein interactions: co-immunoprecipitation. Methods Mol Biol 1615:211–219. https://doi.org/10.1007/978-1-4939-7033-9_17

    Article  CAS  PubMed  Google Scholar 

  3. Paiano A, Margiotta A, De Luca M, Bucci C (2019) Yeast two-hybrid assay to identify interacting proteins. Curr Protoc Protein Sci 95(1):e70. https://doi.org/10.1002/cpps.70

    Article  CAS  PubMed  Google Scholar 

  4. Izumi KM (2001) The yeast two-hybrid assay to identify interacting proteins. Methods Mol Biol 174:249–258. https://doi.org/10.1385/1-59259-227-9:249

    Article  CAS  PubMed  Google Scholar 

  5. McSteen P, Zhao Y (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14(4):467–473. https://doi.org/10.1016/j.devcel.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  6. Weijers D, Wagner D (2016) Transcriptional responses to the auxin hormone. Annu Rev Plant Biol 67:539–574. https://doi.org/10.1146/annurev-arplant-043015-112122

    Article  CAS  PubMed  Google Scholar 

  7. Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of Photomorphogenesis. Annu Rev Genet 46(46):701–724. https://doi.org/10.1146/annurev-genet-102209-163450

    Article  CAS  PubMed  Google Scholar 

  8. Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63(63):353–380. https://doi.org/10.1146/annurev-arplant-042811-105503

    Article  CAS  PubMed  Google Scholar 

  9. Lumba S, Cutler S, McCourt P (2010) Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu Rev Cell Dev Biol 26(26):445–469. https://doi.org/10.1146/annurev-cellbio-100109-103956

    Article  CAS  PubMed  Google Scholar 

  10. Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68(68):291–322. https://doi.org/10.1146/annurev-arplant-042916-040925

    Article  CAS  PubMed  Google Scholar 

  11. Kong SG, Okajima K (2016) Diverse photoreceptors and light responses in plants. J Plant Res 129(2):111–114. https://doi.org/10.1007/s10265-016-0792-5

    Article  PubMed  Google Scholar 

  12. Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science 7(5):204–210. Pii S1360–1385(02)02245–8. https://doi.org/10.1016/S1360-1385(02)02245-8

    Article  CAS  PubMed  Google Scholar 

  13. Cashmore AR, Jarillo JA, Wu YJ, Liu DM (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284 (5415):760–765. https://doi.org/10.1126/science.284.5415.760

  14. Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3(2):85–93. https://doi.org/10.1038/nrm728

    Article  CAS  PubMed  Google Scholar 

  15. Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332(6025):103–106. https://doi.org/10.1126/science.1200660

    Article  CAS  PubMed  Google Scholar 

  16. Lian HL, He SB, Zhang YC, Zhu DM, Zhang JY, Jia KP, Sun SX, Li L, Yang HQ (2011) Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev 25(10):1023–1028. https://doi.org/10.1101/gad.2025111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu B, Zuo ZC, Liu HT, Liu XM, Lin CT (2011) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25(10):1029–1034. https://doi.org/10.1101/gad.2025011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu F, He SB, Zhang JY, Mao ZL, Wang WX, Li T, Hua J, Dui SS, Xu PB, Li L, Lian HL, Yang HQ (2018) Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol Plant 11(4):523–541. https://doi.org/10.1016/j.molp.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  19. Zhu DM, Maier A, Lee JH, Laubinger S, Saijo Y, Wang H, Qu LJ, Hoecker U, Deng XW (2008) Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20(9):2307–2323. https://doi.org/10.1105/tpc.107.056580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sang Y, Li QH, Rubio V, Zhang YC, Mao J, Deng XW, Yang HQ (2005) N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17(5):1569–1584. https://doi.org/10.1105/tpc.104.029645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Danmeng Zhu and Dr. Yuqiu Wang from Peking University, China for valuable advising on CoIP assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengbo He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, J., He, S. (2021). Co-immunoprecipitation Assay for Blue Light-Dependent Protein Interactions in Plants. In: Yin, R., Li, L., Zuo, K. (eds) Plant Photomorphogenesis. Methods in Molecular Biology, vol 2297. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1370-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1370-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1369-6

  • Online ISBN: 978-1-0716-1370-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics