Skip to main content

Non-covalent Encapsulation of siRNA with Cell-Penetrating Peptides

  • Protocol
  • First Online:
Design and Delivery of SiRNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2282))

Abstract

SiRNAs may act as selective and potent therapeutics, but poor deliverability in vivo is a limitation. Among the recently proposed vectors, cell-penetrating peptides (CPPs), also referred as protein transduction domains (PTDs), allow siRNA stabilization and increased cellular uptake. This chapter aims to guide scientists in the preparation and characterization of CPP-siRNA complexes, particularly the evaluation of novel CPPs variants for siRNA encapsulation and delivery. Herein, we present a collection of methods to determine CPP-siRNA interaction, encapsulation, stability, conformation, transfection, and silencing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aigner A (2007) Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 76(1):9–21. https://doi.org/10.1007/s00253-007-0984-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Babu A, Muralidharan R, Amreddy N, Mehta M, Munshi A, Ramesh R (2016) Nanoparticles for siRNA-based gene silencing in tumor therapy. IEEE Trans Nanobioscience 15(8):849–863. https://doi.org/10.1109/TNB.2016.2621730

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abdelrahman M, Douziech Eyrolles L, Alkarib SY, Herve-Aubert K, Ben Djemaa S, Marchais H, Chourpa I, David S (2017) siRNA delivery system based on magnetic nanovectors: characterization and stability evaluation. Eur J Pharm Sci 106:287–293. https://doi.org/10.1016/j.ejps.2017.05.062

    Article  CAS  PubMed  Google Scholar 

  4. Acharya R, Saha S, Ray S, Hazra S, Mitra MK, Chakraborty J (2017) siRNA-nanoparticle conjugate in gene silencing: a future cure to deadly diseases? Mater Sci Eng C Mater Biol Appl 76:1378–1400. https://doi.org/10.1016/j.msec.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  5. Adamo G, Grimaldi N, Campora S, Bulone D, Bondi ML, Al-Sheikhly M, Sabatino MA, Dispenza C, Ghersi G (2016) Multi-functional nanogels for tumor targeting and redox-sensitive drug and siRNA delivery. Molecules 21(11). https://doi.org/10.3390/molecules21111594

  6. Adesina SK, Akala EO (2015) Nanotechnology approaches for the delivery of exogenous siRNA for HIV therapy. Mol Pharm 12(12):4175–4187. https://doi.org/10.1021/acs.molpharmaceut.5b00335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Afkham A, Aghebati-Maleki L, Siahmansouri H, Sadreddini S, Ahmadi M, Dolati S, Afkham NM, Akbarzadeh P, Jadidi-Niaragh F, Younesi V, Yousefi M (2018) Chitosan (CMD)-mediated co-delivery of SN38 and snail-specific siRNA as a useful anticancer approach against prostate cancer. Pharmacol Rep 70(3):418–425. https://doi.org/10.1016/j.pharep.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  8. Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA, Jaeger L (2011) Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6(12):2022–2034. https://doi.org/10.1038/nprot.2011.418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Agnoletti M, Bohr A, Thanki K, Wan F, Zeng X, Boetker JP, Yang M, Foged C (2017) Inhalable siRNA-loaded nano-embedded microparticles engineered using microfluidics and spray drying. Eur J Pharm Biopharm 120:9–21. https://doi.org/10.1016/j.ejpb.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Ahmadzada T, Reid G, McKenzie DR (2018) Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 10(1):69–86. https://doi.org/10.1007/s12551-017-0392-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holm T (2011) Cell-penetrating peptides Uptake, stability and biological activity. Stocckholms Universitet

    Google Scholar 

  12. Asai T, Tsuzuku T, Takahashi S, Okamoto A, Dewa T, Nango M, Hyodo K, Ishihara H, Kikuchi H, Oku N (2014) Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 444(4):599–604. https://doi.org/10.1016/j.bbrc.2014.01.107

    Article  CAS  PubMed  Google Scholar 

  13. Beloor J, Zeller S, Choi CS, Lee SK, Kumar P (2015) Cationic cell-penetrating peptides as vehicles for siRNA delivery. Ther Deliv 6(4):491–507. https://doi.org/10.4155/tde.15.2

    Article  CAS  PubMed  Google Scholar 

  14. Cantini L, Attaway CC, Butler B, Andino LM, Sokolosky ML, Jakymiw A (2013) Fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2A oncogene into oral cancer cells. PLoS One 8(9):e73348. https://doi.org/10.1371/journal.pone.0073348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tuttolomondo M, Casella C, Hansen PL, Polo E, Herda LM, Dawson KA, Ditzel HJ, Mollenhauer J (2017) Human DMBT1-derived cell-penetrating peptides for intracellular siRNA delivery. Mol Ther Nucleic Acids 8:264–276. https://doi.org/10.1016/j.omtn.2017.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157(2):195–206. https://doi.org/10.1111/j.1476-5381.2009.00057.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meade BR, Dowdy SF (2008) Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv Drug Deliv Rev 60(4–5):530–536. https://doi.org/10.1016/j.addr.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  18. Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, Barnes PJ, Sproat BS, Gait MJ, Lindsay MA (2007) Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 18(5):1450–1459. https://doi.org/10.1021/bc070077d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crombez L, Morris MC, Heitz F, Divita G (2011) A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery. Methods Mol Biol 764:59–73. https://doi.org/10.1007/978-1-61779-188-8_4

    Article  CAS  PubMed  Google Scholar 

  20. Nakase I, Tanaka G, Futaki S (2013) Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Mol BioSyst 9(5):855. https://doi.org/10.1039/c2mb25467k

    Article  CAS  PubMed  Google Scholar 

  21. Margus H, Padari K, Pooga M (2012) Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Mol Ther 20(3):525–533. https://doi.org/10.1038/mt.2011.284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, Heitz F, Divita G (2009) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17(1):95–103. https://doi.org/10.1038/mt.2008.215

    Article  CAS  PubMed  Google Scholar 

  23. Youn P, Chen Y, Furgeson DY (2014) A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm 11(2):486–495. https://doi.org/10.1021/mp400446v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20(10):760–784. https://doi.org/10.1002/psc.2672

    Article  CAS  PubMed  Google Scholar 

  25. Lee SH, Castagner B, Leroux JC (2013) Is there a future for cell-penetrating peptides in oligonucleotide delivery? Eur J Pharm Biopharm 85(1):5–11. https://doi.org/10.1016/j.ejpb.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  26. Alhakamy NA, Nigatu AS, Berkland CJ, Ramsey JD (2013) Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther Deliv 4(6):741–757. https://doi.org/10.4155/tde.13.44

    Article  CAS  PubMed  Google Scholar 

  27. Law M, Jafari M, Chen P (2008) Physicochemical characterization of siRNA-peptide complexes. Biotechnol Prog 24(4):957–963. https://doi.org/10.1002/btpr.13

    Article  CAS  PubMed  Google Scholar 

  28. Tuttolomondo M, Ditzel HJ (2020) Simple FRET electrophoresis method for precise and dynamic evaluation of serum siRNA stability. ACS Med Chem Lett 11(2):195–202. https://doi.org/10.1021/acsmedchemlett.9b00472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janes RW, Miles AJ, Woollett B, Whitmore L, Klose D, Wallace BA (2012) Circular dichroism spectral data and metadata in the protein circular Dichroism Data Bank (PCDDB): a tutorial guide to accession and deposition. Chirality 24(9):751–763. https://doi.org/10.1002/chir.22050

    Article  CAS  PubMed  Google Scholar 

  32. Whitmore L, Miles AJ, Mavridis L, Janes RW, Wallace BA (2017) PCDDB: new developments at the protein circular Dichroism Data Bank. Nucleic Acids Res 45(D1):D303–D307. https://doi.org/10.1093/nar/gkw796

    Article  CAS  PubMed  Google Scholar 

  33. Whitmore L, Woollett B, Miles AJ, Klose DP, Janes RW, Wallace BA (2011) PCDDB: the protein circular Dichroism Data Bank, a repository for circular dichroism spectral and metadata. Nucleic Acids Res 39(Database issue):D480–D486. https://doi.org/10.1093/nar/gkq1026

    Article  CAS  PubMed  Google Scholar 

  34. Lees JG, Miles AJ, Wien F, Wallace BA (2006) A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 22(16):1955–1962. https://doi.org/10.1093/bioinformatics/btl327

    Article  CAS  PubMed  Google Scholar 

  35. Meersman F, Atilgan C, Miles AJ, Bader R, Shang W, Matagne A, Wallace BA, Koch MH (2010) Consistent picture of the reversible thermal unfolding of hen egg-white lysozyme from experiment and molecular dynamics. Biophys J 99(7):2255–2263. https://doi.org/10.1016/j.bpj.2010.07.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lopes JL, Miles AJ, Whitmore L, Wallace BA (2014) Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: applications in secondary structure analyses. Protein Sci 23(12):1765–1772. https://doi.org/10.1002/pro.2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tolchard J, Walpole SJ, Miles AJ, Maytum R, Eaglen LA, Hackstadt T, Wallace BA, Blumenschein TMA (2018) The intrinsically disordered tarp protein from chlamydia binds actin with a partially preformed helix. Sci Rep 8(1):1960. https://doi.org/10.1038/s41598-018-20290-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agrawal P, Bhalla S, Usmani SS, Singh S, Chaudhary K, Raghava GP, Gautam A (2016) CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res 44(D1):D1098–D1103. https://doi.org/10.1093/nar/gkv1266

    Article  CAS  PubMed  Google Scholar 

  39. Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P, Tyagi A, discovery c O s d, Raghava GP (2013) In silico approaches for designing highly effective cell penetrating peptides. J Transl Med 11:74. https://doi.org/10.1186/1479-5876-11-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gautam A, Chaudhary K, Kumar R, Raghava GP (2015) Computer-aided virtual screening and designing of cell-penetrating peptides. Methods Mol Biol 1324:59–69. https://doi.org/10.1007/978-1-4939-2806-4_4

    Article  PubMed  Google Scholar 

  41. Ebbesen MF, Olesen MT, Gjelstrup MC, Pakula MM, Larsen EK, Hansen IM, Hansen PL, Mollenhauer J, Malle BM, Howard KA (2015) Tunable CD44-specific cellular retargeting with hyaluronic acid nanoshells. Pharm Res 32(4):1462–1474. https://doi.org/10.1007/s11095-014-1552-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the European Union PathChooser Marie-Curie Initial Training Network (ITN)(PITN-GA-2013-608373), the Lundbeckfonden Center of Excellence NanoCAN, the University of Southern Denmark (SDU) DAWN-2020 project of the SDU Presidents SDU2020 program, the Danish Cancer Society, A Race Agaisnt Breast Cancer and the A.P. Moeller Foundation. Moreover, we acknowledge the Danish Molecular Biomedical Imaging Center (DaMBIC; University of Southern Denmark) for the use of the bioimaging facilities, and Prof. Jesper Wengel (Biomolecular Nanoscale Engineering Center, University of Southern Denmark) for providing the tdTomato1 siRNA.

Conflicts of Interest: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martina Tuttolomondo or Henrik J. Ditzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tuttolomondo, M., Ditzel, H.J. (2021). Non-covalent Encapsulation of siRNA with Cell-Penetrating Peptides. In: Ditzel, H.J., Tuttolomondo, M., Kauppinen, S. (eds) Design and Delivery of SiRNA Therapeutics. Methods in Molecular Biology, vol 2282. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1298-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1298-9_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1297-2

  • Online ISBN: 978-1-0716-1298-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics