Skip to main content

Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2280))

Abstract

The aim of this short review chapter is to provide a brief summary of the relevance of riboflavin (Rf or vitamin B2) and its derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) for human neuromuscular bioenergetics.

Therefore, as a completion of this book we would like to summarize what kind of human pathologies could derive from genetic disturbances of Rf transport, flavin cofactor synthesis and delivery to nascent apoflavoproteins, as well as by alteration of vitamin recycling during protein turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tolomeo M, Nisco A, Leone P, Barile M (2020) Development of novel experimental models to study flavoproteome alterations in human neuromuscular diseases: the effect of Rf therapy. Int J Mol Sci 21(15):5310. https://doi.org/10.3390/ijms21155310

    Article  CAS  PubMed Central  Google Scholar 

  2. Rutter J, Winge DR, Schiffman JD (2010) Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion 10(4):393–401. https://doi.org/10.1016/j.mito.2010.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maklashina E, Rajagukguk S, Iverson TM, Cecchini G (2018) The unassembled flavoprotein subunits of human and bacterial complex II have impaired catalytic activity and generate only minor amounts of ROS. J Biol Chem 293(20):7754–7765. https://doi.org/10.1074/jbc.RA118.001977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21(11):3847. https://doi.org/10.3390/ijms21113847

    Article  CAS  PubMed Central  Google Scholar 

  5. Balasubramaniam S, Christodoulou J, Rahman S (2019) Disorders of riboflavin metabolism. J Inherit Metab Dis 42:608. https://doi.org/10.1002/jimd.12058

    Article  CAS  PubMed  Google Scholar 

  6. O’Callaghan B, Bosch AM, Houlden H (2019) An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J Inherit Metab Dis 42:598. https://doi.org/10.1002/jimd.12053

    Article  PubMed  Google Scholar 

  7. Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C (2016) Riboflavin transport and metabolism in humans. J Inherit Metab Dis 39(4):545–557. https://doi.org/10.1007/s10545-016-9950-0

    Article  CAS  PubMed  Google Scholar 

  8. Barile M, Giancaspero TA, Brizio C, Panebianco C, Indiveri C, Galluccio M, Vergani L, Eberini I, Gianazza E (2013) Biosynthesis of flavin cofactors in man: implications in health and disease. Curr Pharm Des 19(14):2649–2675

    Article  CAS  PubMed  Google Scholar 

  9. Ross NS, Hansen TP (1992) Riboflavin deficiency is associated with selective preservation of critical flavoenzyme-dependent metabolic pathways. Biofactors 3(3):185–190

    CAS  PubMed  Google Scholar 

  10. Yonezawa A, Masuda S, Katsura T, Inui K (2008) Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am J Physiol Cell Physiol 295(3):C632–C641. https://doi.org/10.1152/ajpcell.00019.2008

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto S, Inoue K, Ohta KY, Fukatsu R, Maeda JY, Yoshida Y, Yuasa H (2009) Identification and functional characterization of rat riboflavin transporter 2. J Biochem 145(4):437–443. https://doi.org/10.1093/jb/mvn181

    Article  PubMed  Google Scholar 

  12. Yao Y, Yonezawa A, Yoshimatsu H, Masuda S, Katsura T, Inui K (2010) Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J Nutr 140(7):1220–1226. https://doi.org/10.3945/jn.110.122911

    Article  CAS  PubMed  Google Scholar 

  13. Console L, Tolomeo M, Colella M, Barile M, Indiveri C (2019) Reconstitution in proteoliposomes of the recombinant human riboflavin transporter 2 (SLC52A2) overexpressed in E. coli. Int J Mol Sci 20(18):4416. https://doi.org/10.3390/ijms20184416

    Article  CAS  PubMed Central  Google Scholar 

  14. Colon-Moran W, Argaw T, Wilson CA (2017) Three cysteine residues of SLC52A1, a receptor for the porcine endogenous retrovirus-A (PERV-A), play a critical role in cell surface expression and infectivity. Virology 507:140–150. https://doi.org/10.1016/j.virol.2017.04.019

    Article  CAS  PubMed  Google Scholar 

  15. Subramanian VS, Subramanya SB, Rapp L, Marchant JS, Ma TY, Said HM (2011) Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. Biochim Biophys Acta 1808(12):3016–3021. https://doi.org/10.1016/j.bbamem.2011.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karthikeyan S, Zhou Q, Mseeh F, Grishin NV, Osterman AL, Zhang H (2003) Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch. Structure 11(3):265–273. https://doi.org/10.1016/s0969-2126(03)00024-8

    Article  CAS  PubMed  Google Scholar 

  17. Brizio C, Galluccio M, Wait R, Torchetti EM, Bafunno V, Accardi R, Gianazza E, Indiveri C, Barile M (2006) Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase. Biochem Biophys Res Commun 344(3):1008–1016. https://doi.org/10.1016/j.bbrc.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Chastain JL, McCormick DB (1987) Flavin catabolites: identification and quantitation in human urine. Am J Clin Nutr 46(5):830–834. https://doi.org/10.1093/ajcn/46.5.830

    Article  CAS  PubMed  Google Scholar 

  19. Zempleni J, Galloway JR, McCormick DB (1996) Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr 63(1):54–66. https://doi.org/10.1093/ajcn/63.1.54

    Article  CAS  PubMed  Google Scholar 

  20. McCormick DB (1989) Two interconnected B vitamins: riboflavin and pyridoxine. Physiol Rev 69(4):1170–1198. https://doi.org/10.1152/physrev.1989.69.4.1170

    Article  CAS  PubMed  Google Scholar 

  21. Said HM, Ortiz A, Moyer MP, Yanagawa N (2000) Riboflavin uptake by human-derived colonic epithelial NCM460 cells. Am J Physiol Cell Physiol 278(2):C270–C276. https://doi.org/10.1152/ajpcell.2000.278.2.C270

    Article  CAS  PubMed  Google Scholar 

  22. Fujimura M, Yamamoto S, Murata T, Yasujima T, Inoue K, Ohta KY, Yuasa H (2010) Functional characteristics of the human ortholog of riboflavin transporter 2 and riboflavin-responsive expression of its rat ortholog in the small intestine indicate its involvement in riboflavin absorption. J Nutr 140(10):1722–1727. https://doi.org/10.3945/jn.110.128330

    Article  CAS  PubMed  Google Scholar 

  23. Udhayabanu T, Manole A, Rajeshwari M, Varalakshmi P, Houlden H, Ashokkumar B (2017) Riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. J Clin Med 6(5):52. https://doi.org/10.3390/jcm6050052

    Article  CAS  PubMed Central  Google Scholar 

  24. Spector R (1980) Riboflavin homeostasis in the central nervous system. J Neurochem 35(1):202–209. https://doi.org/10.1111/j.1471-4159.1980.tb12507.x

    Article  CAS  PubMed  Google Scholar 

  25. Patel M, Vadlapatla RK, Pal D, Mitra AK (2012) Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells. Brain Res 1468:1–10. https://doi.org/10.1016/j.brainres.2012.05.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barile M, Brizio C, Valenti D, De Virgilio C, Passarella S (2000) The riboflavin/FAD cycle in rat liver mitochondria. Eur J Biochem 267(15):4888–4900

    Article  CAS  PubMed  Google Scholar 

  27. Giancaspero TA, Locato V, de Pinto MC, De Gara L, Barile M (2009) The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS J 276(1):219–231. https://doi.org/10.1111/j.1742-4658.2008.06775.x

    Article  CAS  PubMed  Google Scholar 

  28. Vergani L, Barile M, Angelini C, Burlina AB, Nijtmans L, Freda MP, Brizio C, Zerbetto E, Dabbeni-Sala F (1999) Riboflavin therapy. Biochemical heterogeneity in two adult lipid storage myopathies. Brain 122(Pt 12):2401–2411

    Article  PubMed  Google Scholar 

  29. Giancaspero TA, Locato V, Barile M (2013) A regulatory role of NAD redox status on flavin cofactor homeostasis in S. cerevisiae mitochondria. Oxid Med Cell Longev 2013:612784. https://doi.org/10.1155/2013/612784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Titus SA, Moran RG (2000) Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria. J Biol Chem 275(47):36811–36817. https://doi.org/10.1074/jbc.M005163200

    Article  CAS  PubMed  Google Scholar 

  31. Tzagoloff A, Jang J, Glerum DM, Wu M (1996) FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria. J Biol Chem 271(13):7392–7397. https://doi.org/10.1074/jbc.271.13.7392

    Article  CAS  PubMed  Google Scholar 

  32. Spaan AN, Ijlst L, van Roermund CW, Wijburg FA, Wanders RJ, Waterham HR (2005) Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab 86(4):441–447. https://doi.org/10.1016/j.ymgme.2005.07.014

    Article  CAS  PubMed  Google Scholar 

  33. Bafunno V, Giancaspero TA, Brizio C, Bufano D, Passarella S, Boles E, Barile M (2004) Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J Biol Chem 279(1):95–102. https://doi.org/10.1074/jbc.M308230200

    Article  CAS  PubMed  Google Scholar 

  34. Giancaspero TA, Wait R, Boles E, Barile M (2008) Succinate dehydrogenase flavoprotein subunit expression in Saccharomyces cerevisiae--involvement of the mitochondrial FAD transporter, Flx1p. FEBS J 275(6):1103–1117. https://doi.org/10.1111/j.1742-4658.2008.06270.x

    Article  CAS  PubMed  Google Scholar 

  35. Giancaspero TA, Dipalo E, Miccolis A, Boles E, Caselle M, Barile M (2014) Alteration of ROS homeostasis and decreased lifespan in S. cerevisiae elicited by deletion of the mitochondrial translocator FLX1. Biomed Res Int 2014:101286. https://doi.org/10.1155/2014/101286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schiff M, Veauville-Merllie A, Su CH, Tzagoloff A, Rak M, Ogier de Baulny H, Boutron A, Smedts-Walters H, Romero NB, Rigal O, Rustin P, Vianey-Saban C, Acquaviva-Bourdain C (2016) SLC25A32 mutations and riboflavin-responsive exercise intolerance. N Engl J Med 374(8):795–797. https://doi.org/10.1056/NEJMc1513610

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hellebrekers D, Sallevelt S, Theunissen TEJ, Hendrickx ATM, Gottschalk RW, Hoeijmakers JGJ, Habets DD, Bierau J, Schoonderwoerd KG, Smeets HJM (2017) Novel SLC25A32 mutation in a patient with a severe neuromuscular phenotype. Eur J Hum Genet 25(7):886–888. https://doi.org/10.1038/ejhg.2017.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aili A, Hasim A, Kelimu A, Guo X, Mamtimin B, Abudula A, Upur H (2013) Association of the plasma and tissue riboflavin levels with C20orf54 expression in cervical lesions and its relationship to HPV16 infection. PLoS One 8(11):e79937. https://doi.org/10.1371/journal.pone.0079937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tutino V, Defrancesco ML, Tolomeo M, De Nunzio V, Lorusso D, Paleni D, Caruso MG, Notarnicola M, Barile M (2018) The expression of riboflavin transporters in human colorectal cancer. Anticancer Res 38(5):2659–2667. https://doi.org/10.21873/anticanres.12508

    Article  CAS  PubMed  Google Scholar 

  40. Eli M, Li DS, Zhang WW, Kong B, Du CS, Wumar M, Mamtimin B, Sheyhidin I, Hasim A (2012) Decreased blood riboflavin levels are correlated with defective expression of RFT2 gene in gastric cancer. World J Gastroenterol 18(24):3112–3118. https://doi.org/10.3748/wjg.v18.i24.3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Long L, Pang XX, Lei F, Zhang JS, Wang W, Liao LD, Xu XE, He JZ, Wu JY, Wu ZY, Wang LD, Lin DC, Li EM, Xu LY (2018) SLC52A3 expression is activated by NF-kappaB p65/Rel-B and serves as a prognostic biomarker in esophageal cancer. Cell Mol Life Sci 75(14):2643–2661. https://doi.org/10.1007/s00018-018-2757-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santoro V, Kovalenko I, Vriens K, Christen S, Bernthaler A, Haegebarth A, Fendt SM, Christian S (2020) SLC25A32 sustains cancer cell proliferation by regulating flavin adenine nucleotide (FAD) metabolism. Oncotarget 11(8):801–812. https://doi.org/10.18632/oncotarget.27486

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fu T, Liu Y, Wang Q, Sun Z, Di H, Fan W, Liu M, Wang J (2016) Overexpression of riboflavin transporter 2 contributes toward progression and invasion of glioma. Neuroreport 27(15):1167–1173. https://doi.org/10.1097/WNR.0000000000000674

    Article  CAS  PubMed  Google Scholar 

  44. Jiang XR, Yu XY, Fan JH, Guo L, Zhu C, Jiang W, Lu SH (2014) RFT2 is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenesis by sustaining cell proliferation and protecting against cell death. Cancer Lett 353(1):78–86. https://doi.org/10.1016/j.canlet.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  45. Chiong MA, Sim KG, Carpenter K, Rhead W, Ho G, Olsen RK, Christodoulou J (2007) Transient multiple acyl-CoA dehydrogenation deficiency in a newborn female caused by maternal riboflavin deficiency. Mol Genet Metab 92(1-2):109–114. https://doi.org/10.1016/j.ymgme.2007.06.017

    Article  CAS  PubMed  Google Scholar 

  46. Ho G, Yonezawa A, Masuda S, Inui K, Sim KG, Carpenter K, Olsen RK, Mitchell JJ, Rhead WJ, Peters G, Christodoulou J (2011) Maternal riboflavin deficiency, resulting in transient neonatal-onset glutaric aciduria Type 2, is caused by a microdeletion in the riboflavin transporter gene GPR172B. Hum Mutat 32(1):E1976–E1984. https://doi.org/10.1002/humu.21399

    Article  CAS  PubMed  Google Scholar 

  47. Mosegaard S, Bruun GH, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS (2017) An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Mol Genet Metab 122(4):182–188. https://doi.org/10.1016/j.ymgme.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  48. Gregersen N, Andresen BS, Pedersen CB, Olsen RK, Corydon TJ, Bross P (2008) Mitochondrial fatty acid oxidation defects--remaining challenges. J Inherit Metab Dis 31(5):643–657. https://doi.org/10.1007/s10545-008-0990-y

    Article  CAS  PubMed  Google Scholar 

  49. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506. https://doi.org/10.1038/nrd2060

    Article  CAS  PubMed  Google Scholar 

  50. Dembic M, Andersen HS, Bastin J, Doktor TK, Corydon TJ, Sass JO, Lopes Costa A, Djouadi F, Andresen BS (2019) Next generation sequencing of RNA reveals novel targets of resveratrol with possible implications for Canavan disease. Mol Genet Metab 126(1):64–76. https://doi.org/10.1016/j.ymgme.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  51. Green P, Wiseman M, Crow YJ, Houlden H, Riphagen S, Lin JP, Raymond FL, Childs AM, Sheridan E, Edwards S, Josifova DJ (2010) Brown-Vialetto-Van Laere syndrome, a ponto-bulbar palsy with deafness, is caused by mutations in c20orf54. Am J Hum Genet 86(3):485–489. https://doi.org/10.1016/j.ajhg.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dipti S, Childs AM, Livingston JH, Aggarwal AK, Miller M, Williams C, Crow YJ (2005) Brown-Vialetto-Van Laere syndrome; variability in age at onset and disease progression highlighting the phenotypic overlap with Fazio-Londe disease. Brain Dev 27(6):443–446. https://doi.org/10.1016/j.braindev.2004.10.003

    Article  PubMed  Google Scholar 

  53. Haack TB, Makowski C, Yao Y, Graf E, Hempel M, Wieland T, Tauer U, Ahting U, Mayr JA, Freisinger P, Yoshimatsu H, Inui K, Strom TM, Meitinger T, Yonezawa A, Prokisch H (2012) Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome. J Inherit Metab Dis 35(6):943–948. https://doi.org/10.1007/s10545-012-9513-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson JO, Gibbs JR, Megarbane A, Urtizberea JA, Hernandez DG, Foley AR, Arepalli S, Pandraud A, Simon-Sanchez J, Clayton P, Reilly MM, Muntoni F, Abramzon Y, Houlden H, Singleton AB (2012) Exome sequencing reveals riboflavin transporter mutations as a cause of motor neuron disease. Brain 135(Pt 9):2875–2882. https://doi.org/10.1093/brain/aws161

    Article  PubMed  PubMed Central  Google Scholar 

  55. Amir F, Atzinger C, Massey K, Greinwald J, Hunter LL, Ulm E, Kettler M (2020) The clinical journey of patients with riboflavin transporter deficiency type 2. J Child Neurol 35(4):283–290. https://doi.org/10.1177/0883073819893159

    Article  PubMed  Google Scholar 

  56. Fan J, Fogel BL (2018) Successful treatment of a genetic childhood ataxia due to riboflavin transporter deficiency. Cereb Atax 5:12. https://doi.org/10.1186/s40673-018-0091-0

    Article  Google Scholar 

  57. Bamaga AK, Maamari RN, Culican SM, Shinawi M, Golumbek PT (2018) Child neurology: Brown-Vialetto-Van Laere syndrome: dramatic visual recovery after delayed riboflavin therapy. Neurology 91(20):938–941. https://doi.org/10.1212/WNL.0000000000006498

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shi K, Shi Z, Yan H, Wang X, Yang Y, Xiong H, Gu Q, Wu Y, Jiang Y, Wang J (2019) A Chinese pedigree with Brown-Vialetto-Van Laere syndrome due to two novel mutations of SLC52A2 gene: clinical course and response to riboflavin. BMC Med Genet 20(1):76. https://doi.org/10.1186/s12881-019-0811-1

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gorcenco S, Vaz FM, Tracewska-Siemiatkowska A, Tranebjaerg L, Cremers FPM, Ygland E, Kicsi J, Rendtorff ND, Moller C, Kjellstrom U, Andreasson S, Puschmann A (2019) Oral therapy for riboflavin transporter deficiency - what is the regimen of choice? Parkinsonism Relat Disord 61:245–247. https://doi.org/10.1016/j.parkreldis.2018.10.017

    Article  PubMed  Google Scholar 

  60. Abbas Q, Jafri SK, Ishaque S, Rahman AJ (2018) Brown-Vialetto-Van Laere syndrome: a novel diagnosis to a common presentation. BMJ Case Rep 2018:bcr2018224958. https://doi.org/10.1136/bcr-2018-224958

    Article  PubMed Central  Google Scholar 

  61. Garg M, Kulkarni SD, Hegde AU, Shah KN (2018) Riboflavin treatment in genetically proven Brown-Vialetto-Van Laere syndrome. J Pediatr Neurosci 13(4):471–473. https://doi.org/10.4103/JPN.JPN_131_17

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mutlu B, Topcu MT, Ciprut A (2019) A case with Brown-Vialetto-Van Laere syndrome: a sudden onset auditory neuropathy spectrum disorder. Turkish Archiv Otorhinolaryngol 57(4):201–205. https://doi.org/10.5152/tao.2019.4639

    Article  Google Scholar 

  63. Rabbani B, Bakhshandeh MK, Navaeifar MR, Abbaskhanian A, Soveizi M, Geravandpoor S, Mahdieh N (2020) Brown-Vialetto-Van Laere syndrome and Fazio-Londe syndrome: a novel mutation and in silico analyses. J Clin Neurosci 72:342–349. https://doi.org/10.1016/j.jocn.2020.01.040

    Article  PubMed  Google Scholar 

  64. Carreau C, Lenglet T, Mosnier I, Lahlou G, Fargeot G, Weiss N, Demeret S, Salachas F, Veauville-Merllie A, Acquaviva C, Nadjar Y (2020) A juvenile ALS-like phenotype dramatically improved after high-dose riboflavin treatment. Ann Clin Transl Neurol 7(2):250–253. https://doi.org/10.1002/acn3.50977

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bosch AM, Abeling NG, Ijlst L, Knoester H, van der Pol WL, Stroomer AE, Wanders RJ, Visser G, Wijburg FA, Duran M, Waterham HR (2011) Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis 34(1):159–164. https://doi.org/10.1007/s10545-010-9242-z

    Article  CAS  PubMed  Google Scholar 

  66. Chaya S, Zampoli M, Gray D, Booth J, Riordan G, Ndondo A, Fieggen K, Rusch J, van der Watt G, Pillay K, van der Westhuizen F, Menezes M, Wilmshurst J (2018) The first case of riboflavin transporter deficiency in sub-Saharan Africa. Semin Pediatr Neurol 26:10–14. https://doi.org/10.1016/j.spen.2017.03.002

    Article  PubMed  Google Scholar 

  67. Manole A, Jaunmuktane Z, Hargreaves I, Ludtmann MHR, Salpietro V, Bello OD, Pope S, Pandraud A, Horga A, Scalco RS, Li A, Ashokkumar B, Lourenco CM, Heales S, Horvath R, Chinnery PF, Toro C, Singleton AB, Jacques TS, Abramov AY, Muntoni F, Hanna MG, Reilly MM, Revesz T, Kullmann DM, Jepson JEC, Houlden H (2017) Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain 140(11):2820–2837. https://doi.org/10.1093/brain/awx231

    Article  PubMed  PubMed Central  Google Scholar 

  68. Foley AR, Menezes MP, Pandraud A, Gonzalez MA, Al-Odaib A, Abrams AJ, Sugano K, Yonezawa A, Manzur AY, Burns J, Hughes I, McCullagh BG, Jungbluth H, Lim MJ, Lin JP, Megarbane A, Urtizberea JA, Shah AH, Antony J, Webster R, Broomfield A, Ng J, Mathew AA, O’Byrne JJ, Forman E, Scoto M, Prasad M, O’Brien K, Olpin S, Oppenheim M, Hargreaves I, Land JM, Wang MX, Carpenter K, Horvath R, Straub V, Lek M, Gold W, Farrell MO, Brandner S, Phadke R, Matsubara K, McGarvey ML, Scherer SS, Baxter PS, King MD, Clayton P, Rahman S, Reilly MM, Ouvrier RA, Christodoulou J, Zuchner S, Muntoni F, Houlden H (2014) Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain 137(Pt 1):44–56. https://doi.org/10.1093/brain/awt315

    Article  PubMed  Google Scholar 

  69. Nimmo GAM, Ejaz R, Cordeiro D, Kannu P, Mercimek-Andrews S (2018) Riboflavin transporter deficiency mimicking mitochondrial myopathy caused by complex II deficiency. Am J Med Genet A 176(2):399–403. https://doi.org/10.1002/ajmg.a.38530

    Article  CAS  PubMed  Google Scholar 

  70. Jaeger B, Bosch AM (2016) Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience. J Inherit Metab Dis 39(4):559–564. https://doi.org/10.1007/s10545-016-9924-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olsen RKJ, Konarikova E, Giancaspero TA, Mosegaard S, Boczonadi V, Matakovic L, Veauville-Merllie A, Terrile C, Schwarzmayr T, Haack TB, Auranen M, Leone P, Galluccio M, Imbard A, Gutierrez-Rios P, Palmfeldt J, Graf E, Vianey-Saban C, Oppenheim M, Schiff M, Pichard S, Rigal O, Pyle A, Chinnery PF, Konstantopoulou V, Moslinger D, Feichtinger RG, Talim B, Topaloglu H, Coskun T, Gucer S, Botta A, Pegoraro E, Malena A, Vergani L, Mazza D, Zollino M, Ghezzi D, Acquaviva C, Tyni T, Boneh A, Meitinger T, Strom TM, Gregersen N, Mayr JA, Horvath R, Barile M, Prokisch H (2016) Riboflavin-responsive and -non-responsive mutations in FAD synthase cause multiple acyl-CoA dehydrogenase and combined respiratory-chain deficiency. Am J Hum Genet 98(6):1130–1145. https://doi.org/10.1016/j.ajhg.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Galluccio M, Brizio C, Torchetti EM, Ferranti P, Gianazza E, Indiveri C, Barile M (2007) Over-expression in Escherichia coli, purification and characterization of isoform 2 of human FAD synthetase. Protein Expr Purif 52(1):175–181. https://doi.org/10.1016/j.pep.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  73. Torchetti EM, Brizio C, Colella M, Galluccio M, Giancaspero TA, Indiveri C, Roberti M, Barile M (2010) Mitochondrial localization of human FAD synthetase isoform 1. Mitochondrion 10(3):263–273. https://doi.org/10.1016/j.mito.2009.12.149

    Article  CAS  PubMed  Google Scholar 

  74. Leone P, Galluccio M, Brizio C, Barbiroli A, Iametti S, Indiveri C, Barile M (2019) The hidden side of the human FAD synthase 2. Int J Biol Macromol 138:986–995. https://doi.org/10.1016/j.ijbiomac.2019.07.138

    Article  CAS  PubMed  Google Scholar 

  75. Giancaspero TA, Galluccio M, Miccolis A, Leone P, Eberini I, Iametti S, Indiveri C, Barile M (2015) Human FAD synthase is a bi-functional enzyme with a FAD hydrolase activity in the molybdopterin binding domain. Biochem Biophys Res Commun 465(3):443–449. https://doi.org/10.1016/j.bbrc.2015.08.035

    Article  CAS  PubMed  Google Scholar 

  76. Leone P, Galluccio M, Barbiroli A, Eberini I, Tolomeo M, Vrenna F, Gianazza E, Iametti S, Bonomi F, Indiveri C, Barile M (2018) Bacterial production, characterization and protein modeling of a novel monofuctional isoform of FAD synthase in humans: an emergency protein? Molecules 23(1):116. https://doi.org/10.3390/molecules23010116

    Article  CAS  PubMed Central  Google Scholar 

  77. Leone P, Galluccio M, Quarta S, Anoz-Carbonell E, Medina M, Indiveri C, Barile M (2019) Mutation of aspartate 238 in FAD synthase isoform 6 increases the specific activity by weakening the FAD binding. Int J Mol Sci 20(24):6203. https://doi.org/10.3390/ijms20246203

    Article  CAS  PubMed Central  Google Scholar 

  78. Miccolis A, Galluccio M, Giancaspero TA, Indiveri C, Barile M (2012) Bacterial over-expression and purification of the 3′phosphoadenosine 5′phosphosulfate (PAPS) reductase domain of human FAD synthase: functional characterization and homology modeling. Int J Mol Sci 13(12):16880–16898. https://doi.org/10.3390/ijms131216880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miccolis A, Galluccio M, Nitride C, Giancaspero TA, Ferranti P, Iametti S, Indiveri C, Bonomi F, Barile M (2014) Significance of redox-active cysteines in human FAD synthase isoform 2. Biochim Biophys Acta 1844(12):2086–2095. https://doi.org/10.1016/j.bbapap.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  80. Giancaspero TA, Colella M, Brizio C, Difonzo G, Fiorino GM, Leone P, Brandsch R, Bonomi F, Iametti S, Barile M (2015) Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis. Front Chem 3:30. https://doi.org/10.3389/fchem.2015.00030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Torchetti EM, Bonomi F, Galluccio M, Gianazza E, Giancaspero TA, Iametti S, Indiveri C, Barile M (2011) Human FAD synthase (isoform 2): a component of the machinery that delivers FAD to apo-flavoproteins. FEBS J 278(22):4434–4449. https://doi.org/10.1111/j.1742-4658.2011.08368.x

    Article  CAS  PubMed  Google Scholar 

  82. Lynch JH, Sa N, Saeheng S, Raffaelli N, Roje S (2018) Characterization of a non-nudix pyrophosphatase points to interplay between flavin and NAD(H) homeostasis in Saccharomyces cerevisiae. PLoS One 13(6):e0198787. https://doi.org/10.1371/journal.pone.0198787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yildiz Y, Olsen RKJ, Sivri HS, Akcoren Z, Nygaard HH, Tokatli A (2018) Post-mortem detection of FLAD1 mutations in 2 Turkish siblings with hypotonia in early infancy. Neuromuscul Disord 28(9):787–790. https://doi.org/10.1016/j.nmd.2018.05.009

    Article  PubMed  Google Scholar 

  84. Ryder B, Tolomeo M, Nochi Z, Colella M, Barile M, Olsen RK, Inbar-Feigenberg M (2019) A novel truncating FLAD1 variant, causing multiple acyl-CoA dehydrogenase deficiency (MADD) in an 8-year-old boy. JIMD Rep 45:37–44. https://doi.org/10.1007/8904_2018_139

    Article  CAS  PubMed  Google Scholar 

  85. Garcia-Villoria J, De Azua B, Tort F, Mosegaard S, Ugarteburu O, Texido L, Morales-Romero B, Olsen RKJ, Ribes A (2018) FLAD1, encoding FAD synthase, is mutated in a patient with myopathy, scoliosis and cataracts. Clin Genet 94(6):592–593. https://doi.org/10.1111/cge.13452

    Article  CAS  PubMed  Google Scholar 

  86. Yamada K, Ito M, Kobayashi H, Hasegawa Y, Fukuda S, Yamaguchi S, Taketani T (2019) Flavin adenine dinucleotide synthase deficiency due to FLAD1 mutation presenting as multiple acyl-CoA dehydrogenation deficiency-like disease: a case report. Brain Dev 41(7):638–642. https://doi.org/10.1016/j.braindev.2019.04.002

    Article  PubMed  Google Scholar 

  87. Muru K, Reinson K, Kunnapas K, Lillevali H, Nochi Z, Mosegaard S, Pajusalu S, Olsen RKJ, Ounap K (2019) FLAD1-associated multiple acyl-CoA dehydrogenase deficiency identified by newborn screening. Mol Genet Genom Med 7(9):e915. https://doi.org/10.1002/mgg3.915

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from Cure RTD (Year 2019) http://curertd.org/news/new/ “Alterations of Rf transport and metabolism in Brown-Vialetto-Van-Laere Syndrome (BVVLS)” (to M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Barile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tolomeo, M., Nisco, A., Barile, M. (2021). Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. In: Barile, M. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 2280. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1286-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1286-6_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1285-9

  • Online ISBN: 978-1-0716-1286-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics