Skip to main content

Controlled Delivery of Plasmid DNA to Melanoma Tumors by Gene Electrotransfer

  • Protocol
  • First Online:
Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2265))

Abstract

Gene electrotransfer (GET) is a reliable and effective physical method for in vivo delivery of plasmid DNA (pDNA). Several preclinical and clinical studies have utilized GET to deliver plasmids encoding immune stimulating genes for treatment of melanoma and other tumor types. Intratumor delivery of plasmids encoding cytokines directly to tumors can induce not only a local immune response, but a systemic one as well. To obtain an effective immune response, it is critical to achieve the appropriate expression pattern of the delivered transgene. Expression pattern (levels and kinetics) can be modified by manipulating the electrotransfer parameters. These parameters include the tissue target and the electric pulse parameters of pulse width, electric field, and pulse number. We have found that to induce a robust immune response, we needed only low to moderately elevated expression levels compared to controls. When developing a therapeutic protocol, it is important to establish what expression profile will enable the appropriate response. In this chapter we describe how to determine the appropriate GET protocol to achieve the expression profile that can result in the desired clinical response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heller LC (2016) Principles of electroporation for gene therapy. In: Miklavcic D (ed) Handbook of electroporation, 1st edn. Springer International Publishing, Cham

    Google Scholar 

  2. Shirley SA, Heller R, Heller LC (2013) Electroporation gene therapy. In: Lattime EC, Gerson SL (eds) Gene therapy of Cancer: translational approaches from preclinical studies to clinical implementation, 3rd edn. Academic Press, San Diego

    Google Scholar 

  3. Young JL, Dean DA (2015) Electroporation-mediated gene delivery. Adv Genet 89:49–88

    Article  CAS  Google Scholar 

  4. Vannucci L, Lai M, Chiuppesi F et al (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36(1):1–22

    CAS  PubMed  Google Scholar 

  5. Wirth T, Parker N, Yla-Herttuala S (2013) History of gene therapy. Gene 525(2):162–169

    Article  CAS  Google Scholar 

  6. Kaufmann KB, Buning H, Galy A et al (2013) Gene therapy on the move. EMBO Mol Med 5(11):1642–1661

    Article  CAS  Google Scholar 

  7. Heller R, Heller LC (2015) Gene electrotransfer clinical trials. Adv Genet 89:235–262

    Article  CAS  Google Scholar 

  8. Heller LC, Heller R (2010) Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 10(4):312–317

    Article  CAS  Google Scholar 

  9. Gothelf A, Gehl J (2010) Gene electrotransfer to skin; review of existing literature and clinical perspectives. Curr Gene Ther 10(4):287–299

    Article  CAS  Google Scholar 

  10. Sokolowska E, Blachnio-Zabielska AU (2019) A critical review of electroporation as a plasmid delivery system in mouse skeletal muscle. Int J Mol Sci 20(11):2776

    Article  CAS  Google Scholar 

  11. Marshall WG Jr, Boone BA, Burgos JD et al (2010) Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression. Gene Ther 17(3):419–423

    Article  CAS  Google Scholar 

  12. Sersa G, Teissie J, Cemazar M et al (2015) Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 64(10):1315–1327

    Article  CAS  Google Scholar 

  13. Savarin M, Kamensek U, Cemazar M et al (2017) Electrotransfer of plasmid DNA radiosensitizes B16F10 tumors through activation of immune response. Radiol Oncol 51(1):30–39

    Article  CAS  Google Scholar 

  14. Milevoj N, Tratar UL, Nemec A et al (2019) A combination of electrochemotherapy, gene electrotransfer of plasmid encoding canine IL-12 and cytoreductive surgery in the treatment of canine oral malignant melanoma. Res Vet Sci 122:40–49

    Article  CAS  Google Scholar 

  15. Cemazar M, Golzio M, Sersa G et al (2009) Control by pulse parameters of DNA electrotransfer into solid tumors in mice. Gene Ther 16(5):635–644

    Article  CAS  Google Scholar 

  16. Shirley SA, Lundberg CG, Li F et al (2015) Controlled gene delivery can enhance therapeutic outcome for cancer immune therapy for melanoma. Curr Gene Ther 15(1):32–43

    Article  CAS  Google Scholar 

  17. Soden D, Larkin J, Collins C et al (2004) The development of novel flexible electrode arrays for the electrochemotherapy of solid tumour tissue. (Potential for endoscopic treatment of inaccessible cancers). Paper presented at the annual international conference of the IEEE engineering in medicine and biology society, 5:3547–3550

    Google Scholar 

  18. Soden DM, Larkin JO, Collins CG et al (2006) Successful application of targeted electrochemotherapy using novel flexible electrodes. Cancer Lett 232(2):300–310

    Article  CAS  Google Scholar 

  19. Agerholm-Larsen B, Iversen HK, Ibsen P et al (2011) Preclinical validation of electrochemotherapy as an effective treatment for brain tumors. Cancer Res 71(11):3753–3762

    Article  CAS  Google Scholar 

  20. Lucas ML, Heller L, Coppola D et al (2002) IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16. F10 Melanoma Mol Ther 5(6):668–675

    Article  CAS  Google Scholar 

  21. Lucas ML, Heller R (2003) IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol 22(12):755–763

    Article  CAS  Google Scholar 

  22. Shi G, Edelblute C, Arpag S et al (2018) IL-12 Gene electrotransfer triggers a change in immune response within mouse tumors. Cancers 10(12):498. https://doi.org/10.3390/cancers10120498

    Article  CAS  PubMed Central  Google Scholar 

  23. Marrero B, Shirley S, Heller R (2014) Delivery of interleukin-15 to B16 melanoma by electroporation leads to tumor regression and long-term survival. Technol Cancer Res Treat 13(6):551–560

    PubMed  PubMed Central  Google Scholar 

  24. Daud AI, DeConti RC, Andrews S et al (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26(36):5896–5903

    Article  CAS  Google Scholar 

  25. Algazi A, Bhatia S, Agarwala S et al (2020) Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol 31(4):532–540

    Article  CAS  Google Scholar 

  26. Greaney SK, Algazi AP, Tsai KK et al (2020) Intratumoral plasmid IL12 electroporation therapy in patients with advanced melanoma induces systemic and intratumoral T-cell responses. Cancer Immunol Res 8(2):246–254

    Article  CAS  Google Scholar 

  27. Algazi AP, Twitty CG, Tsai KK et al (2020) Phase II trial of IL-12 plasmid transfection and PD-1 blockade in immunologically quiescent melanoma. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-2217

  28. Gilbert R, Jaroszeski MJ, Heller R (1997) Novel electrode designs for electrochemotherapy. Biochem Biophys Acta 1334:9–14

    Article  CAS  Google Scholar 

  29. Heller R, Cruz Y, Heller LC et al (2010) Electrically mediated delivery of plasmid DNA to the skin, using a multielectrode array. Hum Gene Ther 21(3):357–362

    Article  CAS  Google Scholar 

  30. Heller L, Coppola D (2002) Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 9(19):1321–1325

    Article  CAS  Google Scholar 

  31. Heller LC, Cruz YL, Ferraro B et al (2010) Plasmid injection and application of electric pulses alter endogenous mRNA and protein expression in B16. F10 mouse melanomas. Cancer Gene Ther 17(12):864–871

    Article  CAS  Google Scholar 

  32. Heller L, Todorovic V, Cemazar M (2013) Electrotransfer of single-stranded or double-stranded DNA induces complete regression of palpable B16. F10 mouse melanomas. Cancer Gene Ther 20(12):695–700

    Article  CAS  Google Scholar 

  33. Znidar K, Bosnjak M, Cemazar M et al (2016) Cytosolic DNA sensor upregulation accompanies DNA electrotransfer in B16.F10 melanoma cells. Mol Ther Nucleic Acids 5(6):e322. https://doi.org/10.1038/mtna.2016.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Znidar K, Bosnjak M, Semenova N et al (2018) Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget 9(27):18665–18681

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heller, R., Shi, G. (2021). Controlled Delivery of Plasmid DNA to Melanoma Tumors by Gene Electrotransfer. In: Hargadon, K.M. (eds) Melanoma. Methods in Molecular Biology, vol 2265. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1205-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1205-7_43

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1204-0

  • Online ISBN: 978-1-0716-1205-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics