Skip to main content

High-Throughput Production of Platelet-Like Particles

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

Abstract

The in vitro production of platelets could provide a life-saving intervention for patients that would otherwise require donor-derived platelets. Producing large numbers of platelets in vitro from their progenitor cells, megakaryocytes, remains remarkably difficult and inefficient. Here, a human megakaryoblast leukemia cell line (MEG-01) was used to assess the maturation of megakaryocytes and to develop a new methodology for producing high numbers of platelet-like particles from mature MEG-01 cells in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chang Y, Bluteau D, Debili N et al (2007) From hematopoietic stem cells to platelets. J Thromb Haemost 5(Suppl 1):318–327. https://doi.org/10.1111/j.1538-7836.2007.02472.x

    Article  CAS  PubMed  Google Scholar 

  2. Deutsch VR, Tomer A (2006) Megakaryocyte development and platelet production. Br J Haematol 134(5):453–466. https://doi.org/10.1111/j.1365-2141.2006.06215.x

    Article  CAS  PubMed  Google Scholar 

  3. Machlus KR, Italiano JE Jr (2013) The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol 201(6):785–796. https://doi.org/10.1083/jcb.201304054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Machlus KR, Thon JN, Italiano JE Jr (2014) Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol 165(2):227–236. https://doi.org/10.1111/bjh.12758

    Article  PubMed  Google Scholar 

  5. Brown E, Carlin LM, Nerlov C et al (2018) Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels. Life Sci Alliance 1(2):e201800061. https://doi.org/10.26508/lsa.201800061

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harker LA, Finch CA (1969) Thrombokinetics in man. J Clin Invest 48(6):963–974. https://doi.org/10.1172/JCI106077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lambert MP, Sullivan SK, Fuentes R et al (2013) Challenges and promises for the development of donor-independent platelet transfusions. Blood 121(17):3319–3324. https://doi.org/10.1182/blood-2012-09-455428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ogura M, Morishima Y, Ohno R et al (1985) Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 66(6):1384–1392

    Article  CAS  Google Scholar 

  9. Risitano A, Beaulieu LM, Vitseva O et al (2012) Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 119(26):6288–6295. https://doi.org/10.1182/blood-2011-12-396440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takeuchi K, Satoh M, Kuno H et al (1998) Platelet-like particle formation in the human megakaryoblastic leukaemia cell lines, MEG-01 and MEG-01s. Br J Haematol 100(2):436–444. https://doi.org/10.1046/j.1365-2141.1998.00576.x

    Article  CAS  PubMed  Google Scholar 

  11. Bernard JJ, Seweryniak KE, Koniski AD et al (2009) Foxp3 regulates megakaryopoiesis and platelet function. Arterioscler Thromb Vasc Biol 29(11):1874–1882. https://doi.org/10.1161/ATVBAHA.109.193805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenberg SM, Rosenthal DS, Greeley TA et al (1988) Characterization of a new megakaryocytic cell line: the Dami cell. Blood 72(6):1968–1977

    Article  CAS  Google Scholar 

  13. Nagano T, Ohga S, Kishimoto Y et al (1992) Ultrastructural analysis of platelet-like particles from a human megakaryocytic leukemia cell line (CMK 11-5). Int J Hematol 56(1):67–78

    CAS  PubMed  Google Scholar 

  14. Sledge GW Jr, Glant M, Jansen J et al (1986) Establishment in long term culture of megakaryocytic leukemia cells (EST-IU) from the marrow of a patient with leukemia and a mediastinal germ cell neoplasm. Cancer Res 46(4 Pt 2):2155–2159

    PubMed  Google Scholar 

  15. Takeuchi K, Ogura M, Saito H et al (1991) Production of platelet-like particles by a human megakaryoblastic leukemia cell line (MEG-01). Exp Cell Res 193(1):223–226. https://doi.org/10.1016/0014-4827(91)90560-h

    Article  CAS  PubMed  Google Scholar 

  16. Tange T, Takei Y, Takaai S et al (1988) In-vitro production of human platelets. Lancet 2(8604):218. https://doi.org/10.1016/s0140-6736(88)92318-5

    Article  CAS  PubMed  Google Scholar 

  17. Yang XL, Ge MK, Mao DK et al (2016) Thrombin maybe plays an important role in MK differentiation into platelets. Biomed Res Int 2016:9313269. https://doi.org/10.1155/2016/9313269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Isakari Y, Sogo S, Ishida T et al (2009) Gene expression analysis during platelet-like particle production in phorbol myristate acetate-treated MEG-01 cells. Biol Pharm Bull 32(3):354–358. https://doi.org/10.1248/bpb.32.354

    Article  CAS  PubMed  Google Scholar 

  19. Battinelli E, Willoughby SR, Foxall T et al (2001) Induction of platelet formation from megakaryocytoid cells by nitric oxide. Proc Natl Acad Sci U S A 98(25):14458–14463. https://doi.org/10.1073/pnas.241427398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding sources to support this work from the National Science Foundation CAREER Program (CBET-1554017), the Office of Naval Research Young Investigator Program (N00014-16-1-3012), the National Institutes of Health Trailblazer Award (1R21EB025413-01), the National Institutes of Health Director’s New Innovator Award (1DP2CA250006-01), and the Undergraduate Research Opportunity Program (awarded to KP and ML). This work was also supported by the University of Utah Flow Cytometry Facility, the University of Utah Fluorescence Microscopy Core Facility (1S10RR024761-01), the National Cancer Institute (5P30CA042014-24), and the National Center for Research of the National Institutes of Health (1S10RR026802-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. Deans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Persson, K.M., Kneller, P.V., Livingston, M.W., Bush, L.M., Deans, T.L. (2021). High-Throughput Production of Platelet-Like Particles. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics