Skip to main content

Monitoring Bacterial Translation Rates Genome-Wide

  • Protocol
  • First Online:
Ribosome Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2252))

  • 1277 Accesses

Abstract

Modern DNA sequencing technologies have allowed for the sequencing of tens of thousands of bacterial genomes. While this explosion of information has brought about new insights into the diversity of the prokaryotic world, much less is known of the identity of proteins encoded within these genomes, as well as their rates of production. The advent of ribosome profiling, or the deep sequencing of ribosome-protected footprints, has recently enabled the systematic evaluation of every protein-coding region in a given experimental condition, the rates of protein production for each gene, and the variability in translation rates across each message. Here, I provide an update to the bacterial ribosome profiling approach, with a particular emphasis on a simplified strategy to reduce cloning time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16(11):651–664. https://doi.org/10.1038/nrm4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ingolia NT, Hussmann JA, Weissman JS (2019) Ribosome profiling: global views of translation. Cold Spring Harb Perspect Biol 11:5. https://doi.org/10.1101/cshperspect.a032698

    Article  CAS  Google Scholar 

  3. Otto GM, Brar GA (2018) Seq-ing answers: uncovering the unexpected in global gene regulation. Curr Genet 64(6):1183–1188. https://doi.org/10.1007/s00294-018-0839-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ndah E, Jonckheere V, Giess A, Valen E, Menschaert G, Van Damme P (2017) REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes. Nucleic Acids Res 45(20):e168. https://doi.org/10.1093/nar/gkx758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weaver J, Mohammad F, Buskirk AR, Storz G (2019) Identifying small proteins by ribosome profiling with stalled initiation complexes. MBio 10:2. https://doi.org/10.1128/mBio.02819-18

    Article  Google Scholar 

  6. Giess A, Jonckheere V, Ndah E, Chyżyńska K, Van Damme P, Valen E (2017) Ribosome signatures aid bacterial translation initiation site identification. BMC Biol 15(1):76. https://doi.org/10.1186/s12915-017-0416-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meydan S, Marks J, Klepacki D, Sharma V, Baranov PV, Firth AE, Margus T, Kefi A, Vázquez-Laslop N, Mankin AS (2019) Retapamulin-assisted ribosome profiling reveals the alternative bacterial proteome. Mol Cell 74(3):481–493.e486. https://doi.org/10.1016/j.molcel.2019.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakahigashi K, Takai Y, Kimura M, Abe N, Nakayashiki T, Shiwa Y, Yoshikawa H, Wanner BL, Ishihama Y, Mori H (2016) Comprehensive identification of translation start sites by tetracycline-inhibited ribosome profiling. DNA Res 23(3):193–201. https://doi.org/10.1093/dnares/dsw008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schrader JM, Zhou B, Li G-W, Lasker K, Childers WS, Williams B, Long T, Crosson S, McAdams HH, Weissman JS, Shapiro L (2014) The coding and noncoding architecture of the Caulobacter crescentus genome. PLoS Genet 10(7):e1004463. https://doi.org/10.1371/journal.pgen.1004463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balakrishnan R, Oman K, Shoji S, Bundschuh R, Fredrick K (2014) The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli. Nucleic Acids Res 42(21):13370–13383. https://doi.org/10.1093/nar/gku1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hwang J-Y, Buskirk AR (2017) A ribosome profiling study of mRNA cleavage by the endonuclease RelE. Nucleic Acids Res 45(1):327–336. https://doi.org/10.1093/nar/gkw944

    Article  CAS  PubMed  Google Scholar 

  12. Meydan S, Klepacki D, Karthikeyan S, Margus T, Thomas P, Jones JE, Khan Y, Briggs J, Dinman JD, Vázquez-Laslop N, Mankin AS (2017) Programmed ribosomal frameshifting generates a copper transporter and a copper chaperone from the same gene. Mol Cell 65(2):207–219. https://doi.org/10.1016/j.molcel.2016.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burkhardt DH, Rouskin S, Zhang Y, Li G-W, Weissman JS, Gross CA (2017) Operon mRNAs are organized into ORF-centric structures that predict translation efficiency. elife 6:e22037. https://doi.org/10.7554/eLife.22037

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li G-W, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157(3):624–635. https://doi.org/10.1016/j.cell.2014.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li G-W, Oh E, Weissman JS (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484(7395):538–541. https://doi.org/10.1038/nature10965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohammad F, Green R, Buskirk AR (2019) A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. elife 8:e42591. https://doi.org/10.7554/eLife.42591

    Article  PubMed  PubMed Central  Google Scholar 

  17. Woolstenhulme CJ, Guydosh NR, Green R, Buskirk AR (2015) High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep 11(1):13–21. https://doi.org/10.1016/j.celrep.2015.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakahigashi K, Takai Y, Shiwa Y, Wada M, Honma M, Yoshikawa H, Tomita M, Kanai A, Mori H (2014) Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo. BMC Genomics 15(1):1115. https://doi.org/10.1186/1471-2164-15-1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kannan K, Kanabar P, Schryer D, Florin T, Oh E, Bahroos N, Tenson T, Weissman JS, Mankin AS (2014) The general mode of translation inhibition by macrolide antibiotics. Proc Natl Acad Sci U S A 111(45):15958–15963. https://doi.org/10.1073/pnas.1417334111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marks J, Kannan K, Roncase EJ, Klepacki D, Kefi A, Orelle C, Vázquez-Laslop N, Mankin AS (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Proc Natl Acad Sci U S A 113(43):12150–12155. https://doi.org/10.1073/pnas.1613055113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haft RJF, Keating DH, Schwaegler T, Schwalbach MS, Vinokur J, Tremaine M, Peters JM, Kotlajich MV, Pohlmann EL, Ong IM, Grass JA, Kiley PJ, Landick R (2014) Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A 111(25):E2576–E2585. https://doi.org/10.1073/pnas.1401853111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Burkhardt DH, Rouskin S, Li G-W, Weissman JS, Gross CA (2018) A stress response that monitors and regulates mRNA structure is central to cold shock adaptation. Mol Cell 70(2):274–286.e277. https://doi.org/10.1016/j.molcel.2018.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Xiao Z, Zou Q, Fang J, Wang Q, Yang X, Gao N (2017) Ribosome profiling reveals genome-wide cellular translational regulation upon heat stress in Escherichia coli. Genomics Proteomics Bioinformatics 15(5):324–330. https://doi.org/10.1016/j.gpb.2017.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Becker AH, Oh E, Weissman JS, Kramer G, Bukau B (2013) Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes. Nat Protoc 8(11):2212–2239. https://doi.org/10.1038/nprot.2013.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oh E, Becker AH, Sandikci A, Huber D, Chaba R, Gloge F, Nichols RJ, Typas A, Gross CA, Kramer G, Weissman JS, Bukau B (2011) Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147(6):1295–1308. https://doi.org/10.1016/j.cell.2011.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Datta AK, Burma DP (1972) Association of ribonuclease I with ribosomes and their subunits. J Biol Chem 247(21):6795–6801

    Article  CAS  PubMed  Google Scholar 

  28. Gerashchenko MV, Gladyshev VN (2017) Ribonuclease selection for ribosome profiling. Nucleic Acids Res 45(2):e6. https://doi.org/10.1093/nar/gkw822

    Article  CAS  PubMed  Google Scholar 

  29. Johnson GE, Li G-W (2018) Genome-wide quantitation of protein synthesis rates in bacteria. Meth Enzymol 612:225–249. https://doi.org/10.1016/bs.mie.2018.08.031

    Article  CAS  Google Scholar 

  30. Mohammad F, Buskirk AR (2019) Protocol for ribosome profiling in bacteria. Bio Protoc 9(24):e3468. https://doi.org/10.21769/BioProtoc.3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fishman A, Lamm AT (2019) QsRNA-seq: a protocol for generating libraries for high-throughput sequencing of small RNAs. Bio-protocol 9(5):e3179. https://doi.org/10.21769/BioProtoc.3179

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Emily Powers and Gloria Brar for use of reagents and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oh, E. (2021). Monitoring Bacterial Translation Rates Genome-Wide. In: Labunskyy, V.M. (eds) Ribosome Profiling. Methods in Molecular Biology, vol 2252. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1150-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1150-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1149-4

  • Online ISBN: 978-1-0716-1150-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics