Skip to main content

Immune-to-Brain Signaling Effects on the Neural Substrate for Reward: Behavioral Models of Aversion, Anhedonia, and Despair

  • Protocol
  • First Online:
The Brain Reward System

Part of the book series: Neuromethods ((NM,volume 165))

  • 1066 Accesses

Abstract

The role of immune-to-brain signaling in regulating mood and motivational states has received increasing interest, as clinical studies have uncovered a link between systemic inflammation and treatment-resistant major depressive disorder. With these findings, a need for relevant preclinical rodent models has arisen for investigating the role of systemic inflammation and immune-to-brain signaling on motivated behaviors. Here we describe some of the behavioral paradigms currently employed for examining inflammation-induced negative effect and malaise; more specifically we give examples of how the proinflammatory stimulus Escherichia coli lipopolysaccharide (LPS) can be combined with behavioral paradigms for anhedonia, aversion, and despair. We aim to provide the reader with guidance on how to prepare and conduct experiments exploring the effects of LPS induced systemic inflammation on affective behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kronfol Z, Remick DG (2000) Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 157(5):683–694. https://doi.org/10.1176/appi.ajp.157.5.683

    Article  CAS  PubMed  Google Scholar 

  2. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. https://doi.org/10.1038/nrn2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Remus JL, Dantzer R (2016) Inflammation models of depression in rodents: relevance to psychotropic drug discovery. Int J Neuropsychopharmacol 19(9):pyw028. https://doi.org/10.1093/ijnp/pyw028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300:141–154. https://doi.org/10.1016/j.neuroscience.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  5. Kraus C, Kadriu B, Lanzenberger R, Zarate CA Jr, Kasper S (2019) Prognosis and improved outcomes in major depression: a review. Transl Psychiatry 9(1):127. https://doi.org/10.1038/s41398-019-0460-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arteaga-Henriquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, Birkenhager TK, Musil R, Muller N, Drexhage HA (2019) Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME consortium. Front Psych 10:458. https://doi.org/10.3389/fpsyt.2019.00458

    Article  Google Scholar 

  7. Young JJ, Silber T, Bruno D, Galatzer-Levy IR, Pomara N, Marmar CR (2016) Is there progress? An overview of selecting biomarker candidates for major depressive disorder. Front Psych 7:72. https://doi.org/10.3389/fpsyt.2016.00072

    Article  Google Scholar 

  8. Lee CH, Giuliani F (2019) The role of inflammation in depression and fatigue. Front Immunol 10:1696. https://doi.org/10.3389/fimmu.2019.01696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dregan A, Matcham F, Harber-Aschan L, Rayner L, Brailean A, Davis K, Hatch S, Pariante C, Armstrong D, Stewart R, Hotopf M (2019) Common mental disorders within chronic inflammatory disorders: a primary care database prospective investigation. Ann Rheum Dis 78(5):688–695. https://doi.org/10.1136/annrheumdis-2018-214676

    Article  PubMed  Google Scholar 

  10. Kurina LM, Goldacre MJ, Yeates D, Gill LE (2001) Depression and anxiety in people with inflammatory bowel disease. J Epidemiol Community Health 55(10):716–720. https://doi.org/10.1136/jech.55.10.716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Waterston RH, Lander ES, Sulston JE (2002) On the sequencing of the human genome. Proc Natl Acad Sci U S A 99(6):3712–3716. https://doi.org/10.1073/pnas.042692499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, Damadzic R, Eskay R, Schoor M, Thorsell A, Schwandt ML, Sommer WH, George DT, Parsons LH, Herscovitch P, Hommer D, Heilig M (2011) A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry 16(8):809–817. https://doi.org/10.1038/mp.2010.56

    Article  CAS  PubMed  Google Scholar 

  13. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68(8):748–754. https://doi.org/10.1016/j.biopsych.2010.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez D, Orlowska D, Narendran R, Slifstein M, Liu F, Kumar D, Broft A, Van Heertum R, Kleber HD (2010) Dopamine type 2/3 receptor availability in the striatum and social status in human volunteers. Biol Psychiatry 67(3):275–278. https://doi.org/10.1016/j.biopsych.2009.07.037

    Article  CAS  PubMed  Google Scholar 

  15. Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F (2007) Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol 64(11):1575–1579. https://doi.org/10.1001/archneur.64.11.1575

    Article  PubMed  Google Scholar 

  16. Schultz W, Romo R (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol 63(3):607–624. https://doi.org/10.1152/jn.1990.63.3.607

    Article  CAS  PubMed  Google Scholar 

  17. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266. https://doi.org/10.1038/nrn3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: exploring the brain, 3rd edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  19. Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11(1):2–38. https://doi.org/10.1111/j.1369-1600.2006.00012.x

    Article  PubMed  Google Scholar 

  20. Mueller D, de Wit H (2011) Conditioned place preference in rodents and humans. In: Raber J (ed) Animal models of behavioral analysis, Neuromethods, vol 50. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-883-6_6

    Chapter  Google Scholar 

  21. Bardo MT, Rowlett JK, Harris MJ (1995) Conditioned place preference using opiate and stimulant drugs: a meta-analysis. Neurosci Biobehav Rev 19(1):39–51. https://doi.org/10.1016/0149-7634(94)00021-r

    Article  CAS  PubMed  Google Scholar 

  22. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834. https://doi.org/10.1016/j.neuron.2010.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tordoff MG (2002) Obesity by choice: the powerful influence of nutrient availability on nutrient intake. Am J Physiol Regul Integr Comp Physiol 282(5):R1536–R1539. https://doi.org/10.1152/ajpregu.00739.2001

    Article  CAS  PubMed  Google Scholar 

  24. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Washington, DC

    Book  Google Scholar 

  25. Hasegawa H, Tomita H (1986) Assessment of taste disorders in rats by simultaneous study of the two-bottle preference test and abnormal ingestive behavior. Auris Nasus Larynx 13(Suppl 1):S33–S41. https://doi.org/10.1016/s0385-8146(86)80032-3

    Article  PubMed  Google Scholar 

  26. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93(3):358–364. https://doi.org/10.1007/bf00187257

    Article  CAS  PubMed  Google Scholar 

  27. Serchov T, van Calker D, Biber K (2016) Sucrose preference test to measure anhedonic behaviour in mice. Bio-protocol 6(19):e1958. https://doi.org/10.21769/BioProtoc.1958

    Article  Google Scholar 

  28. Liu MY, Yin CY, Zhu LJ, Zhu XH, Xu C, Luo CX, Chen H, Zhu DY, Zhou QG (2018) Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc 13(7):1686–1698. https://doi.org/10.1038/s41596-018-0011-z

    Article  CAS  PubMed  Google Scholar 

  29. Ferreira MF, Castanheira L, Sebastiao AM, Telles-Correia D (2018) Depression assessment in clinical trials and pre-clinical tests: a critical review. Curr Top Med Chem 18(19):1677–1703. https://doi.org/10.2174/1568026618666181115095920

    Article  CAS  PubMed  Google Scholar 

  30. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    CAS  PubMed  Google Scholar 

  31. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732. https://doi.org/10.1038/266730a0

    Article  CAS  PubMed  Google Scholar 

  32. Kara NZ, Stukalin Y, Einat H (2018) Revisiting the validity of the mouse forced swim test: systematic review and meta-analysis of the effects of prototypic antidepressants. Neurosci Biobehav Rev 84:1–11. https://doi.org/10.1016/j.neubiorev.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  33. Detke MJ, Lucki I (1996) Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 73(1–2):43–46. https://doi.org/10.1016/0166-4328(96)00067-8

    Article  CAS  PubMed  Google Scholar 

  34. Machado-Vieira R, Baumann J, Wheeler-Castillo C, Latov D, Henter ID, Salvadore G, Zarate CA (2010) The timing of antidepressant effects: a comparison of diverse pharmacological and somatic treatments. Pharmaceuticals (Basel) 3(1):19–41. https://doi.org/10.3390/ph3010019

    Article  CAS  Google Scholar 

  35. Jin ZL, Chen XF, Ran YH, Li XR, Xiong J, Zheng YY, Gao NN, Li YF (2017) Mouse strain differences in SSRI sensitivity correlate with serotonin transporter binding and function. Sci Rep 7(1):8631. https://doi.org/10.1038/s41598-017-08953-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fritz M, Klawonn AM, Nilsson A, Singh AK, Zajdel J, Wilhelms DB, Lazarus M, Lofberg A, Jaarola M, Kugelberg UO, Billiar TR, Hackam DJ, Sodhi CP, Breyer MD, Jakobsson J, Schwaninger M, Schutz G, Parkitna JR, Saper CB, Blomqvist A, Engblom D (2016) Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice. J Clin Invest 126(2):695–705. https://doi.org/10.1172/JCI83844

    Article  PubMed  Google Scholar 

  37. Benson S, Brinkhoff A, Lueg L, Roderigo T, Kribben A, Wilde B, Witzke O, Engler H, Schedlowski M, Elsenbruch S (2017) Effects of acute systemic inflammation on the interplay between sad mood and affective cognition. Transl Psychiatry 7(12):1281. https://doi.org/10.1038/s41398-017-0043-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seemann S, Zohles F, Lupp A (2017) Comprehensive comparison of three different animal models for systemic inflammation. J Biomed Sci 24(1):60. https://doi.org/10.1186/s12929-017-0370-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saper CB, Romanovsky AA, Scammell TE (2012) Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat Neurosci 15(8):1088–1095. https://doi.org/10.1038/nn.3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15(1):7–24. https://doi.org/10.1006/brbi.2000.0613

    Article  CAS  PubMed  Google Scholar 

  41. Teeling JL, Cunningham C, Newman TA, Perry VH (2010) The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: implications for a role of COX-1. Brain Behav Immun 24(3):409–419. https://doi.org/10.1016/j.bbi.2009.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, De Haes P, Kuijlaars J, Langlois X, Matthews LJ, Ver Donck L, Hellings N, Nuydens R (2013) Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediat Inflamm 2013:271359. https://doi.org/10.1155/2013/271359

    Article  CAS  Google Scholar 

  43. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14(5):329–342. https://doi.org/10.1038/nri3661

    Article  CAS  PubMed  Google Scholar 

  44. Estevez J, Chen VL, Podlaha O, Li B, Le A, Vutien P, Chang ET, Rosenberg-Hasson Y, Jiang Z, Pflanz S, Ge D, Gaggar A, Nguyen MH (2017) Differential serum cytokine profiles in patients with chronic hepatitis B, C, and hepatocellular carcinoma. Sci Rep 7(1):11867. https://doi.org/10.1038/s41598-017-11975-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fritz M, Klawonn AM, Jaarola M, Engblom D (2018) Interferon- mediated signaling in the brain endothelium is critical for inflammation-induced aversion. Brain Behav Immun 67:54–58. https://doi.org/10.1016/j.bbi.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  46. Klawonn AM, Malenka RC (2018) Nucleus accumbens modulation in reward and aversion. Cold Spring Harb Symp Quant Biol 83:119–129. https://doi.org/10.1101/sqb.2018.83.037457

    Article  PubMed  Google Scholar 

  47. Nilsson A, Wilhelms DB, Mirrasekhian E, Jaarola M, Blomqvist A, Engblom D (2017) Inflammation-induced anorexia and fever are elicited by distinct prostaglandin dependent mechanisms, whereas conditioned taste aversion is prostaglandin independent. Brain Behav Immun 61:236–243. https://doi.org/10.1016/j.bbi.2016.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522. https://doi.org/10.1038/sj.mp.4002148

    Article  CAS  PubMed  Google Scholar 

  49. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58(5):445–452. https://doi.org/10.1001/archpsyc.58.5.445

    Article  CAS  PubMed  Google Scholar 

  50. Everhardt Queen A, Moerdyk-Schauwecker M, McKee LM, Leamy LJ, Huet YM (2016) Differential expression of inflammatory cytokines and stress genes in male and female mice in response to a lipopolysaccharide challenge. PLoS One 11(4):e0152289. https://doi.org/10.1371/journal.pone.0152289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grota LJ, Bienen T, Felten DL (1997) Corticosterone responses of adult Lewis and Fischer rats. J Neuroimmunol 74(1–2):95–101. https://doi.org/10.1016/s0165-5728(96)00209-3

    Article  CAS  PubMed  Google Scholar 

  52. Stowers L, Cameron P, Keller JA (2013) Ominous odors: olfactory control of instinctive fear and aggression in mice. Curr Opin Neurobiol 23(3):339–345. https://doi.org/10.1016/j.conb.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lorenz K (1970) Studies in animal and human behaviour 1st edn. Harvard University Press, Cambridge, MA

    Google Scholar 

  54. Roma PG, Riley AL (2005) Apparatus bias and the use of light and texture in place conditioning. Pharmacol Biochem Behav 82(1):163–169. https://doi.org/10.1016/j.pbb.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  55. Shimizu C, Oki Y, Mitani Y, Nakamura T, Nabeshima T (2015) Factors affecting ethanol-induced conditioned place preference and locomotor sensitization in mice. Biol Pharm Bull 38(12):1935–1945. https://doi.org/10.1248/bpb.b15-00626

    Article  CAS  PubMed  Google Scholar 

  56. Fritz M, El Rawas R, Salti A, Klement S, Bardo MT, Kemmler G, Dechant G, Saria A, Zernig G (2011) Reversal of cocaine-conditioned place preference and mesocorticolimbic Zif268 expression by social interaction in rats. Addict Biol 16(2):273–284. https://doi.org/10.1111/j.1369-1600.2010.00285.x

    Article  PubMed  Google Scholar 

  57. Zernig G, Pinheiro BS (2015) Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor. Behav Pharmacol 26(6):580–594. https://doi.org/10.1097/FBP.0000000000000167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hurst JL (1990) Urine marking in populations of wild house mice mus-domesticus rutty. 2. Communication between females. Anim Behav 40:223–232. https://doi.org/10.1016/S0003-3472(05)80917-0

    Article  Google Scholar 

  59. Reynolds E (1971) Urination as a social response in mice. Nature 234(5330):481. https://doi.org/10.1038/234481a0

    Article  CAS  PubMed  Google Scholar 

  60. Copeland S, Warren HS, Lowry SF, Calvano SE, Remick D, Inflammation, the Host Response to Injury I (2005) Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol 12(1):60–67. https://doi.org/10.1128/CDLI.12.1.60-67.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1(4):1662–1670. https://doi.org/10.1038/nprot.2006.279

    Article  CAS  PubMed  Google Scholar 

  62. Horii Y, Nagasawa T, Sakakibara H, Takahashi A, Tanave A, Matsumoto Y, Nagayama H, Yoshimi K, Yasuda MT, Shimoi K, Koide T (2017) Hierarchy in the home cage affects behaviour and gene expression in group-housed C57BL/6 male mice. Sci Rep 7(1):6991. https://doi.org/10.1038/s41598-017-07233-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grewal SS, Shepherd JK, Bill DJ, Fletcher A, Dourish CT (1997) Behavioural and pharmacological characterisation of the canopy stretched attend posture test as a model of anxiety in mice and rats. Psychopharmacology 133(1):29–38. https://doi.org/10.1007/s002130050367

    Article  CAS  PubMed  Google Scholar 

  64. Blanchard DC, Griebel G, Blanchard RJ (2003) The mouse defense test battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 463(1–3):97–116. https://doi.org/10.1016/s0014-2999(03)01276-7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klawonn, A.M., Fritz, M. (2021). Immune-to-Brain Signaling Effects on the Neural Substrate for Reward: Behavioral Models of Aversion, Anhedonia, and Despair. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics