Skip to main content

Simultaneous Detection of Phosphoinositide Lipids by Radioactive Metabolic Labeling

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2251))

Abstract

Phosphoinositide (PPI) lipids are a crucial class of low-abundance signaling molecules that regulate many processes within cells. Methods that enable simultaneous detection of all PPI lipid species provide a wholistic snapshot of the PPI profile of cells, which is critical for probing PPI biology. Here we describe a method for the simultaneous measurement of cellular PPI levels by metabolically labeling yeast or mammalian cells with myo-3H-inositol, extracting radiolabeled glycerophosphoinositides, and separating lipid species on an anion exchange column via HPLC.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Duex JE, Nau JJ, Kauffman EJ, Weisman LS (2006) Phosphoinositide 5-phosphatase Fig4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5(4):723–731. https://doi.org/10.1128/EC.5.4.723-731.2006

  2. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137. https://doi.org/10.1152/physrev.00028.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476(1):1–23. https://doi.org/10.1042/BCJ20180022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48(6):307–343. https://doi.org/10.1016/j.plipres.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  5. Shisheva A, Sbrissa D, Ikonomov O (2015) Plentiful PtdIns5P from scanty PtdIns(3,5)P2 or from ample PtdIns? PIKfyve-dependent models: evidence and speculation (response to: DOI 10.1002/bies.201300012). BioEssays 37(3):267–277. https://doi.org/10.1002/bies.201400129

    Article  CAS  PubMed  Google Scholar 

  6. Wallroth A, Haucke V (2018) Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem 293(5):1526–1535. https://doi.org/10.1074/jbc.R117.000629

    Article  CAS  PubMed  Google Scholar 

  7. Botelho RJ, Efe JA, Teis D, Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19(10):4273–4286. https://doi.org/10.1091/mbc.E08-04-0405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malek M, Kielkowska A, Chessa T, Anderson KE, Barneda D, Pir P, Nakanishi H, Eguchi S, Koizumi A, Sasaki J, Juvin V, Kiselev VY, Niewczas I, Gray A, Valayer A, Spensberger D, Imbert M, Felisbino S, Habuchi T, Beinke S, Cosulich S, Le Novere N, Sasaki T, Clark J, Hawkins PT, Stephens LR (2017) PTEN regulates PI(3,4)P2 signaling downstream of class I PI3K. Mol Cell 68(3):566–580 . e510. https://doi.org/10.1016/j.molcel.2017.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Folch J (1949) Brain diphosphoninositide, a new phosphatide having inositol metadiphosphate as a constituent. J Biol Chem 177(2):505–519

    Article  CAS  Google Scholar 

  10. Folch J (1949) Complete fractionation of brain cephalin; isolation from it of phosphatidyl serine, phosphatidyl ethanolamine, and diphosphoinositide. J Biol Chem 177(2):497–504

    Article  CAS  Google Scholar 

  11. Agranoff BW, Murthy P, Seguin EB (1983) Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J Biol Chem 258(4):2076–2078

    Article  CAS  Google Scholar 

  12. Whiteford CC, Best C, Kazlauskas A, Ulug ET (1996) D-3 phosphoinositide metabolism in cells treated with platelet-derived growth factor. Biochem J 319(Pt 3):851–860. https://doi.org/10.1042/bj3190851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156(6):1015–1028. https://doi.org/10.1083/jcb.200201002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clarke NG, Dawson RM (1981) Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J 195(1):301–306. https://doi.org/10.1042/bj1950301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  16. Hale AT, Clarke BP, York JD (2020) Metabolic labeling of inositol phosphates and Phosphatidylinositols in yeast and mammalian cells. Methods Mol Biol 2091:83–92. https://doi.org/10.1007/978-1-0716-0167-9_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whitman M, Downes CP, Keeler M, Keller T, Cantley L (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332(6165):644–646. https://doi.org/10.1038/332644a0

    Article  CAS  PubMed  Google Scholar 

  18. Stack JH, DeWald DB, Takegawa K, Emr SD (1995) Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 129(2):321–334

    Article  CAS  Google Scholar 

  19. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260(5104):88–91

    Article  CAS  Google Scholar 

  20. Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS (2007) Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S A 104(44):17518–17523. https://doi.org/10.1073/pnas.0702275104

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sarkes D, Rameh LE (2010) A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides. Biochem J 428(3):375–384. https://doi.org/10.1042/BJ20100129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wakelam MJ (2014) The uses and limitations of the analysis of cellular phosphoinositides by lipidomic and imaging methodologies. Biochim Biophys Acta 1841(8):1102–1107. https://doi.org/10.1016/j.bbalip.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  23. Jones DR, Ramirez IB, Lowe M, Divecha N (2013) Measurement of phosphoinositides in the zebrafish Danio rerio. Nat Protoc 8(6):1058–1072. https://doi.org/10.1038/nprot.2013.040

    Article  CAS  PubMed  Google Scholar 

  24. Kanehara K, Yu CY, Cho Y, Cheong WF, Torta F, Shui G, Wenk MR, Nakamura Y (2015) Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genet 11(9):e1005511. https://doi.org/10.1371/journal.pgen.1005511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McCartney AJ, Zolov SN, Kauffman EJ, Zhang Y, Strunk BS, Weisman LS, Sutton MA (2014) Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression. Proc Natl Acad Sci U S A 111(45):E4896–E4905. https://doi.org/10.1073/pnas.1411117111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Samie M, Wang X, Zhang X, Goschka A, Li X, Cheng X, Gregg E, Azar M, Zhuo Y, Garrity AG, Gao Q, Slaugenhaupt S, Pickel J, Zolov SN, Weisman LS, Lenk GM, Titus S, Bryant-Genevier M, Southall N, Juan M, Ferrer M, Xu H (2013) A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell 26(5):511–524. https://doi.org/10.1016/j.devcel.2013.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01-NS099340-03 and R01-NS064015-09 to LSW, and LSI Cubed to NS and SSPG. NS was supported in part by NIH T-32-GM007315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois S. Weisman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Steinfeld, N., Giridharan, S.S.P., Kauffman, E.J., Weisman, L.S. (2021). Simultaneous Detection of Phosphoinositide Lipids by Radioactive Metabolic Labeling. In: Botelho, R.J. (eds) Phosphoinositides. Methods in Molecular Biology, vol 2251. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1142-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1142-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1141-8

  • Online ISBN: 978-1-0716-1142-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics