Skip to main content

Measurement of Exocytosis in Genetically Manipulated Mast Cells

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2233))

Abstract

The hallmark of mast cell activation is secretion of immune mediators by regulated exocytosis. Measurements of mediator secretion from mast cells that are genetically manipulated by transient transfections provide a powerful tool for deciphering the underlying mechanisms of mast cell exocytosis. However, common methods to study regulated exocytosis in bulk culture of mast cells suffer from the drawback of high signal-to-noise ratio because of their failure to distinguish between the different mast cell populations, that is, genetically modified mast cells versus their non-transfected counterparts. In particular, the low transfection efficiency of mast cells poses a significant limitation on the use of conventional methodologies. To overcome this hurdle, we developed a method, which discriminates and allows detection of regulated exocytosis of transfected cells based on the secretion of a fluorescent secretory reporter. We used a plasmid encoding for Neuropeptide Y (NPY) fused to a monomeric red fluorescent protein (NPY-mRFP), yielding a fluorescent secretory granule-targeted reporter that is co-transfected with a plasmid encoding a gene of interest. Upon cell trigger, NPY-mRFP is released from the cells by regulated exocytosis, alongside the endogenous mediators. Therefore, using NPY-mRFP as a reporter for mast cell exocytosis allows either quantitative, via a fluorimeter assay, or qualitative analysis, via confocal microscopy, of the genetically manipulated mast cells. Moreover, this method may be easily modified to accommodate studies of regulated exocytosis in any other type of cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahlin JS, Hallgren J (2015) Mast cell progenitors: origin, development and migration to tissues. Mol Immunol 63:9–17. https://doi.org/10.1016/j.molimm.2014.01.018

    Article  CAS  PubMed  Google Scholar 

  2. Klein O, Sagi-Eisenberg R (2019) Anaphylactic degranulation of mast cells: focus on compound exocytosis. J Immunol Res 2019:1–12. https://doi.org/10.1155/2019/9542656

    Article  CAS  Google Scholar 

  3. Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494. https://doi.org/10.1038/nri3690

    Article  CAS  PubMed  Google Scholar 

  4. Johansson SGO, Bieber T, Dahl R et al (2004) Revised nomenclature for allergy for global use: report of the nomenclature review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 113:832–836. https://doi.org/10.1016/j.jaci.2003.12.591

    Article  CAS  PubMed  Google Scholar 

  5. Rådinger M, Jensen BM, Swindle E, Gilfillan AM (2015) Assay of mast cell mediators. In: Methods in molecular biology. Humana Press, New Jersey, pp 307–323

    Google Scholar 

  6. Cruse G, Gilfillan AM, Smrz D (2015) Flow cytometry-based monitoring of mast cell activation. In: Methods in molecular biology. Humana Press, New Jersey, pp 365–379

    Google Scholar 

  7. Johnson DA (2006) Human mast cell proteases: activity assays using thiobenzyl ester substrates. In: Mast cells. Humana Press, New Jersey, pp 193–202

    Google Scholar 

  8. Chi DS, Fitzgerald SM, Krishnaswamy G (2006) Mast cell histamine and cytokine assays. In: Mast cells. Humana Press, New Jersey, pp 203–216

    Google Scholar 

  9. Jensen BM, Falkencrone S, Skov PS (2014) Measuring histamine and cytokine release from basophils and mast cells. In: Methods in molecular biology. Humana Press, New Jersey, pp 135–145

    Google Scholar 

  10. Hohman RJ, Dreskin SC (2001) Measuring degranulation of mast cells. In: Current protocols in immunology. John Wiley & Sons, Inc., Hoboken, NJ, USA, p Unit 7.26

    Google Scholar 

  11. Kuehn HS, Radinger M, Gilfillan AM (2010) Measuring mast cell mediator release. In: Current protocols in immunology. John Wiley & Sons, Inc., Hoboken, NJ, USA, p Unit7.38

    Google Scholar 

  12. Demo SD, Masuda E, Rossi AB et al (1999) Quantitative measurement of mast cell degranulation using a novel flow cytometric annexin-V binding assay. Cytometry 36:340–348. https://doi.org/10.1002/(SICI)1097-0320(19990801)36:4<340::AID-CYTO9>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  13. Naal RMZG, Tabb J, Holowka D, Baird B (2004) In situ measurement of degranulation as a biosensor based on RBL-2H3 mast cells. Biosens Bioelectron 20:791–796. https://doi.org/10.1016/J.BIOS.2004.03.017

    Article  CAS  PubMed  Google Scholar 

  14. Gadi D, Wagenknecht-Wiesner A, Holowka D, Baird B (2011) Sequestration of phosphoinositides by mutated MARCKS effector domain inhibits stimulated Ca2+ mobilization and degranulation in mast cells. Mol Biol Cell 22:4908–4917. https://doi.org/10.1091/mbc.e11-07-0614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen R, Holowka DA, Baird BA (2015) Real-time imaging of Ca(2+) mobilization and degranulation in mast cells. In: Methods in molecular biology. Humana Press, New Jersey, pp 347–363. https://doi.org/10.1007/978-1-4939-1568-2_22

  16. Gaudenzio N, Sibilano R, Marichal T et al (2016) Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest 126:3981–3998. https://doi.org/10.1172/JCI85538

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klein O, Roded A, Hirschberg K et al (2018) Imaging FITC-dextran as a reporter for regulated exocytosis. J Vis Exp 136:57936. https://doi.org/10.3791/57936

    Article  CAS  Google Scholar 

  18. Williams RM, Webb WW (2000) Single granule pH cycling in antigen-induced mast cell secretion. J Cell Sci 113(Pt 21):3839–3850

    CAS  PubMed  Google Scholar 

  19. Williams RM, Shear JB, Zipfel WR et al (1999) Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence. Biophys J 76:1835–1846. https://doi.org/10.1016/S0006-3495(99)77343-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawasaki Y, Saitoh T, Okabe T et al (1991) Visualization of exocytotic secretory processes of mast cells by fluorescence techniques. Biochim Biophys Acta Biomembr 1067:71–80. https://doi.org/10.1016/0005-2736(91)90027-6

    Article  Google Scholar 

  21. Balseiro-Gomez S, Flores JA, Acosta J et al (2016) Transient fusion ensures granule replenishment to maintain repeated release after IgE-mediated mast cell degranulation. J Cell Sci 129:3989–4000. https://doi.org/10.1242/jcs.194340

    Article  CAS  PubMed  Google Scholar 

  22. Tharp MD, Seelig LL, Tigelaar RE, Bergstresser PR (1985) Conjugated avidin binds to mast cell granules. J Histochem Cytochem 33:27–32. https://doi.org/10.1177/33.1.2578142

    Article  CAS  PubMed  Google Scholar 

  23. Wilson JD, Shelby SA, Holowka D, Baird B (2016) Rab11 regulates the mast cell exocytic response. Traffic 17:1027–1041. https://doi.org/10.1111/tra.12418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Azouz NP, Matsui T, Fukuda M, Sagi-Eisenberg R (2012) Decoding the regulation of mast cell exocytosis by networks of Rab GTPases. J Immunol 189:2169–2180. https://doi.org/10.4049/jimmunol.1200542

    Article  CAS  PubMed  Google Scholar 

  25. Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131. https://doi.org/10.1038/nrm732

    Article  CAS  PubMed  Google Scholar 

  26. Makhmutova M, Liang T, Gaisano H et al (2017) Confocal imaging of neuropeptide Y-pHluorin: a technique to visualize insulin granule exocytosis in intact murine and human islets. J Vis Exp:e56089. https://doi.org/10.3791/56089

  27. Almaça J, Liang T, Gaisano HY et al (2015) Spatial and temporal coordination of insulin granule exocytosis in intact human pancreatic islets. Diabetologia 58:2810–2818. https://doi.org/10.1007/s00125-015-3747-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dominguez N, van Weering JRT, Borges R et al (2017) Dense-core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. J Neurochem 144:241–254. https://doi.org/10.1111/jnc.14263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burrone J, Li Z, Murthy VN (2007) Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nat Protoc 1:2970–2978. https://doi.org/10.1038/nprot.2006.449

    Article  CAS  Google Scholar 

  30. Jacobs DT, Weigert R, Grode KD et al (2009) Myosin Vc is a molecular motor that functions in secretory granule trafficking. Mol Biol Cell 20:4471–4488. https://doi.org/10.1091/mbc.e08-08-0865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan CMJ, Green P, Tapoulal N et al (2018) The role of neuropeptide Y in cardiovascular health and disease. Front Physiol 9:1281. https://doi.org/10.3389/fphys.2018.01281

    Article  PubMed  PubMed Central  Google Scholar 

  32. Redegeld FA, Yu Y, Kumari S et al (2018) Non-IgE mediated mast cell activation. Immunol Rev 282:87–113. https://doi.org/10.1111/imr.12629

    Article  CAS  PubMed  Google Scholar 

  33. Campbell RE, Tour O, Palmer AE et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci 99:7877–7882. https://doi.org/10.1073/pnas.082243699

    Article  CAS  PubMed  Google Scholar 

  34. Falcone FH, Wan D, Barwary N, Sagi-Eisenberg R (2018) RBL cells as models for in vitro studies of mast cells and basophils. Immunol Rev 282:47–57. https://doi.org/10.1111/imr.12628

    Article  CAS  PubMed  Google Scholar 

  35. Klein O, Krier-Burris RA, Lazki-Hagenbach P et al (2019) Mammalian diaphanous-related formin 1 (mDia1) coordinates mast cell migration and secretion through its actin-nucleating activity. J Allergy Clin Immunol 144(4):1074–1090. https://doi.org/10.1016/j.jaci.2019.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ljubicic S, Bezzi P, Brajkovic S et al (2013) The GTPase rab37 participates in the control of insulin exocytosis. PLoS One 8:e68255. https://doi.org/10.1371/journal.pone.0068255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Golzio M, Mora MP, Raynaud C et al (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022. https://doi.org/10.1016/S0006-3495(98)78009-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luft C, Ketteler R (2015) Electroporation knows no boundaries: the use of electrostimulation for siRNA delivery in cells and tissues. J Biomol Screen 20:932–942. https://doi.org/10.1177/1087057115579638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin TFJ (2003) Tuning exocytosis for speed: fast and slow modes. Biochim Biophys Acta, Mol Cell Res 1641:157–165. https://doi.org/10.1016/S0167-4889(03)00093-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronit Sagi-Eisenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klein, O., Azouz, N.P., Sagi-Eisenberg, R. (2021). Measurement of Exocytosis in Genetically Manipulated Mast Cells. In: Niedergang, F., Vitale, N., Gasman, S. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 2233. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1044-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1044-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1043-5

  • Online ISBN: 978-1-0716-1044-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics