Skip to main content

Cochlear Inner Hair Cell, Model

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 15 Accesses

Synonyms

Auditory sensory receptor cell, model; Auditory transducer, model

Definition

An algorithmic description of how deflections of the stereocilia in an auditory sensory receptor cell, or cochlear inner hair cell, cause fluctuations in the cell’s intracellular voltage or receptor potential.

Detailed Description

Cochlear inner hair cells (IHCs) are auditory sensory receptor cells located in the organ of Corti. They have stereocilia that deflect following mechanical motion of the organ of Corti (Fig. 1). The fluid surrounding the stereocilia bundle, the endolymph, has a positive electrical potential (80–120 mV), while the electrical potential within the IHC is negative at rest (around −60 mV). Stereocilia deflection toward the tallest cilium in the bundle increases the inward flow of positive ions, mostly potassium (K+), and thus increases the cell’s intracellular potential. This mechanism effectively transduces a mechanical signal (stereocilia motion) into an electrical signal (the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Dallos P (1985) Response characteristics of mammalian cochlear hair cells. J Neurosci 5:1591–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinan JJ (2012) How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear Res 292:35–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Kros CJ (1996) Physiology of mammalian cochlear hair cells. In: Dallos P, Popper AN, Fay RR (eds) The cochlea. Springer, New York, pp 318–385

    Chapter  Google Scholar 

  • Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Poveda EA, Eustaquio-Martin A (2006) A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression. J Assoc Res Otolaryngol 7:218–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Poveda EA, Barrios LF, Alves-Pinto A (2007) Psychophysical estimates of level-dependent best-frequency shifts in the apical region of the human basilar membrane. J Acoust Soc Am 121:3646–3654

    Article  PubMed  Google Scholar 

  • Lukashkin AN, Russell IJ (1998) A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer. J Acoust Soc Am 103:973–980

    Article  CAS  PubMed  Google Scholar 

  • Meddis R, Lopez-Poveda EA (2010) Auditory periphery: from pinna to auditory nerve. In: Meddis R, Lopez-Poveda EA, Popper AN, Fay RR (eds) Computational models of the auditory system. Springer, New York, pp 7–38

    Chapter  Google Scholar 

  • Meddis R, Lopez-Poveda EA, Popper AN, Fay RR (2010) Computational models of the auditory system. Springer, New York

    Book  Google Scholar 

  • Mountain DC, Hubbard AE (1996) Computational analysis of hair cell and auditory nerve processes. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds) Auditory computation. Springer, New York, pp 121–156

    Chapter  Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284:261–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellick PM, Russell IJ (1980) The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea. Hear Res 2:439–445

    Article  CAS  PubMed  Google Scholar 

  • Shamma SA, Chadwick RS, Wilbur WJ, Morrish KA, Rinzel J (1986) A biophysical model of cochlear processing: intensity dependence of pure tone responses. J Acoust Soc Am 80:133–145

    Article  CAS  PubMed  Google Scholar 

  • Zeddies DG, Siegel JH (2004) A biophysical model of an inner hair cell. J Acoust Soc Am 116:426–441

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Geisler DC (1996) From sound to synapse: physiology of the mammalian ear. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique A. Lopez-Poveda .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lopez-Poveda, E.A. (2022). Cochlear Inner Hair Cell, Model. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1006-0_427

Download citation

Publish with us

Policies and ethics