Skip to main content

Phototransduction Biophysics

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Biophysical mechanisms that photoreceptors use to sample light information; Phototransduction cascade; Phototransduction mechanisms

Definition

Phototransduction biophysics comprises intracellular molecular reactions and ion fluxes through ion channels on the photoreceptor membrane that converts light into an electrical signal. Phototransduction biophysics serves the purpose of counting photons and integrating these counts to an estimate – a macroscopic voltage response – of light changes from a small area of visual space. To do this task well in vastly varying light conditions, photoreceptors rely upon stochastic adaptive sampling of light information.

Detailed Description

Basic Structure of Photoreceptor Cells

Photoreceptor cells of most animals are highly polarized, consisting of light-sensitive and light-insensitive parts (Fig. 1). The light-sensitive part is derived either from cilia or microvilli (Fain et al. 2010), forming a specialized light guide, such as the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Dippe MAZ, Wold EH (1985) Antialiasing through stochastic sampling. Comput Graph 19:69–78

    Article  Google Scholar 

  • Fain GL, Hardie R, Laughlin SB (2010) Phototransduction and the evolution of photoreceptors. Curr Biol 20:R114–R124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faivre O, Juusola M (2008) Visual coding in locust photoreceptors. PLoS One 3:e2173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galton F (1907) Vox populi. Nature 75:450–451

    Article  Google Scholar 

  • Gillespie DT (1976) General method for numerically simulating stochastic time evolution of coupled chemical-reactions. J Comput Phys 22:403–434

    Article  CAS  Google Scholar 

  • Gonzalez-Bellido PT, Wardill TJ, Juusola M (2011) Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proc Natl Acad Sci USA 108:4224–4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie RC (1991) Voltage-sensitive potassium channels in Drosophila photoreceptors. J Neurosci 11:3079–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie RC (1996) INDO-1 measurements of absolute resting and light-induced Ca2+ concentration in Drosophila photoreceptors. J Neurosci 16:2924–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie RC (2012) Phototransduction mechanisms in Drosophila microvillar photoreceptors. WIRES Membr Transp Signal 2011:2162–2187

    Google Scholar 

  • Hardie RC, Postma M (2008) Phototransduction in microvillar photoreceptors of Drosophila and other invertebrates. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (eds) The senses: a comprehensive reference. Vision. Academic, San Diego, pp 77–130

    Chapter  Google Scholar 

  • Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338:260–263

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC, Voss D, Pongs O, Laughlin SB (1991) Novel potassium channels encoded by the Shaker locus in Drosophila photoreceptors. Neuron 6:477–486

    Article  CAS  PubMed  Google Scholar 

  • Haseltine EL, Rawlings JB (2002) Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J Chem Phys 117:6959–6969

    Article  CAS  Google Scholar 

  • Heimonen K, Salmela I, Kontiokari P, Weckström M (2006) Large functional variability in cockroach photoreceptors: optimization to low light levels. J Neurosci 26:13454–13462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson SR, Reuss H, Hardie RC (2000) Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J Physiol 524(Pt 1):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochstrate P, Hamdorf K (1990) Microvillar components of light adaptation in blowflies. J Gen Physiol 95:891–910

    Article  CAS  PubMed  Google Scholar 

  • Howard J, Blakeslee B, Laughlin SB (1987) The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B Biol Sci 231:415–435

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ, Hardie RC (2010) Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol 20:189–197

    Article  CAS  PubMed  Google Scholar 

  • Juusola M, Weckstrom M (1993) Band-pass filtering by voltage-dependent membrane in an insect photoreceptor. Neurosci Lett 154:84–88

    Article  CAS  PubMed  Google Scholar 

  • Juusola M, Hardie RC (2001a) Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 degrees C. J Gen Physiol 117:3–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juusola M, Hardie RC (2001b) Light adaptation in Drosophila photoreceptors: II. Rising temperature increases the bandwidth of reliable signaling. J Gen Physiol 117:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juusola M, de Polavieja GG (2003) The rate of information transfer of naturalistic stimulation by graded potentials. J Gen Physiol 122:191–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Krause Y, Krause S, Huang J, Liu CH, Hardie RC, Weckstrom M (2008) Light-dependent modulation of Shab channels via phosphoinositide depletion in Drosophila photoreceptors. Neuron 59:596–607

    Article  CAS  PubMed  Google Scholar 

  • Laughlin SB, de Ruyter van Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36–41

    Article  CAS  PubMed  Google Scholar 

  • Leneman OAZ (1966) Random sampling of random processes: impulse response. Info Control 9:347–363

    Article  Google Scholar 

  • Liu CH, Satoh AK, Postma M, Huang J, Ready DF, Hardie RC (2008) Ca2 + -dependent metarhodopsin inactivation mediated by calmodulin and NINAC myosin III. Neuron 59:778–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Socolich M, Wall MA, Graves J, Wang Z, Ranganathan R (2007) Dynamic scaffolding in a G protein-coupled signaling system. Cell 131:80–92

    Article  CAS  PubMed  Google Scholar 

  • Niven JE, Vahasoyrinki M, Kauranen M, Hardie RC, Juusola M, Weckstrom M (2003) The contribution of Shaker K + channels to the information capacity of Drosophila photoreceptors. Nature 421:630–634

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan K, Urban NN (2010) Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat Neurosci 13:1276–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postma M, Oberwinkler J, Stavenga DG (1999) Does Ca2+ reach millimolar concentrations after single photon absorption in Drosophila photoreceptor microvilli? Biophys J 77:1811–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puchalka J, Kierzek AM (2004) Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophys J 86:1357–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pumir A, Graves J, Ranganathan R, Shraiman BI (2008) Systems analysis of the single photon response in invertebrate photoreceptors. Proc Natl Acad Sci USA 105:10354–10359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao CV, Arkin AP (2003) Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J Chem Phys 118:4999–5010

    Article  CAS  Google Scholar 

  • Resat H, Wiley HS, Dixon DA (2001) Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations. J Phys Chem B 105:11026–11034

    Article  CAS  Google Scholar 

  • Salis H, Kaznessis YN (2005) An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. J Chem Phys 123

    Google Scholar 

  • Scott K, Sun Y, Beckingham K, Zuker CS (1997) Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell 91:375–383

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Technical J 27:379–423

    Article  Google Scholar 

  • Song Z, Postma M, Billings SA, Coca D, Hardie RC, Juusola M (2012) Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr Biol 22:1371–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vähäsöyrinki M, Niven JE, Hardie RC, Weckström M, Juusola M (2006) Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K + channels. J Neurosci 26:2652–2660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O’Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M (2012) Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong F, Knight BW (1980) Adapting-bump model for eccentric cells of limulus. J Gen Physiol 76:539–557

    Article  CAS  PubMed  Google Scholar 

  • Wong F, Knight BW, Dodge FA (1980) Dispersion of latencies in photoreceptors of Limulus and the adapting-bump model. J Gen Physiol 76:517–537

    Article  CAS  PubMed  Google Scholar 

  • Wong F, Knight BW, Dodge FA (1982) Adapting bump model for ventral photoreceptors of Limulus. J Gen Physiol 79:1089–1113

    Article  CAS  PubMed  Google Scholar 

  • Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell 139:246–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yellott JI Jr (1982) Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing. Vision Res 22:1205–1210

    Article  PubMed  Google Scholar 

  • Zheng L, de Polavieja GG, Wolfram V, Asyali MH, Hardie RC, Juusola M (2006) Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. J Gen Physiol 127:495–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Nikolaev A, Wardill TJ, O'Kane CJ, de Polavieja GG, Juusola M (2009) Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I dynamics. PLoS One 4:e4307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Juusola .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Juusola, M., Song, Z., Hardie, R. (2022). Phototransduction Biophysics. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1006-0_333

Download citation

Publish with us

Policies and ethics