Skip to main content

Delayed Rectifier and A-Type Potassium Channels

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 47 Accesses

Synonyms

Non-inactivating potassium current/conductances; Transient potassium currents

Definition

Voltage-gated potassium channels can be grouped into two broad categories: the delayed rectifiers and the “A-type” channels. Delayed rectifiers are named after their delay before activation commences following a voltage change and their contribution to rectification of the current-voltage relationship of cells once they are activated. Delayed rectifiers show little time-dependent inactivation. Inactivation is a process whereby the channels close without a change in the driving force. A-type potassium channels, in contrast, show prominent time and voltage-dependent inactivation. A-type channels may also activate with a delay. There are several approaches to modeling these channels. The roles that the different classes of channels may play in neuronal excitability depend on their interactions with other channels, the time course of voltage fluctuations in the cells, and their localization in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556

    Article  CAS  PubMed  Google Scholar 

  • Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JDT, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 13:333–337

    Article  CAS  PubMed  Google Scholar 

  • Barela AJ, Waddy SP, Lickfett JG, Hunter J, Anido A, Helmers SL, Goldin AL, Escayg A (2006) An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability. J Neurosci 26:2714–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherel I (2004) Regulation of Kþ channel activities in plants. From physiological to molecular aspects. J Exp Botany 55:337–351

    Article  CAS  Google Scholar 

  • Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–285

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun D, Hawkes AG (1995) A Q-matrix cookbook. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum Press, New York, pp 589–633

    Chapter  Google Scholar 

  • Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol Lond 213:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heusser K, Schwappach B (2005) Trafficking of potassium channels. Curr Opin Neurobiol 15:364–369

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol Lond 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan LY, Jan YN (2012) Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol Lond 590:2591–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen CS, Rasmussen HB, Misonou H (2011) Neuronal trafficking of voltage-gated potassium channels. Mol Cell Neurosci 48:288–297

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31:309–316

    Article  CAS  PubMed  Google Scholar 

  • Kanold PO, Manis PB (1999) Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. J Neurosci. 19:2195–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EA, Kaczmarek L (1996) Regulation of potassium channels by protein kinases. Curr Opin Neurobiol. 6:318–323

    Article  Google Scholar 

  • Meng X, Lu Q, Rinzel J (2011) Control of firing patterns by two transient potassium currents: leading spike, latency, bistability. J Comput Neurosci 31:117–136

    Article  PubMed  Google Scholar 

  • Nakajima S (1966) Analysis of K inactivation and TEA action in the supramedullary cells of puffer. J Gen Physiol 49:629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasband MN (2010) Clustered K+ channel complexes in axons. Neurosci Lett 486:101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman JS, Manis PB (2003a) Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. J Neurophysiol 89:3083–3096

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003b) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89:3097–3113

    Article  CAS  PubMed  Google Scholar 

  • Rudy B, Maffie J, Amarillo Y, Clark B, Goldberg EM, Jeong H-Y et al (2009) Voltage gated potassium channels: structure and function of Kv1 to Kv9 subfamilies. In: Squire LR (ed) Encyclopedia of neuroscience, 10th edn. Academic, Oxford, pp 397–425

    Chapter  Google Scholar 

  • Song P, Kaczmarek LK (2006) Modulation of Kv3.1b potassium channel phosphorylation in auditory neurons by conventional and novel protein kinase C isozymes. J Biol Chem 281:15582–15591

    Article  CAS  PubMed  Google Scholar 

  • Watanabe I, Wang HG, Sutachan JJ, Zhu J, Recio-Pinto E, Thornhill WB (2003) Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism. J Physiol. 550:51–66. Erratum in: J Physiol. 551:1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH/NIDCD grant DC004551 to PBM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Manis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Manis, P.B. (2022). Delayed Rectifier and A-Type Potassium Channels. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1006-0_227

Download citation

Publish with us

Policies and ethics