Skip to main content

Neuromorphic Sensors, Head Direction

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

A neuromorphic VLSI head-direction system is a physical circuit (VLSI) model of the head-direction cell system found in the mammalian brain used to maintain and update a compass-like estimate of the animal’s orientation in the environment. Currently, the physical circuit implementations are constructed in mixed-mode (analog and asynchronous digital) VLSI circuits that model spiking neural networks.

Detailed Description

A head-direction cell (described in mammals) is a type of neuron that has been found to become active when an animal is oriented in a particular direction with respect to the environment (Taube et al. 1990a; Sharp et al. 2001). With different neurons responding to different directions, the head-direction cell systemis thought to reflect the animal’s estimate of its orientation in the environment with respect to some reference orientation. While individual neurons maintain their orientation preference to each other in different environments, the system’s...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Chicca E, Indiveri G, Douglas RJ (2004) An event-based VLSI network of integrate-and-fire neurons. Proc Intl Symp Circ Syst 2004:V357–V360. https://doi.org/10.1109/ISCAS.2004.1329536

    Article  Google Scholar 

  • Degris T, Lacheze L, Boucheny C, Arleo A (2004) A spiking neuron model of head-direction cells for robot orientation. In: The eighth international conference on simulation of adaptive behavior, from animals to animats, pp 255–263

    Google Scholar 

  • Giulioni M, Camilleri P, Mattia M, Dante V, Braun J, Del Giudice P (2011) Robust working memory in an asynchronously spiking neural network realized with neuromorphic VLSI. Front Neurosci 5:149

    PubMed  Google Scholar 

  • Goodridge JP, Touretzky DS (2000) Modeling attractor deformation in the rodent head-direction system. J Neurophys 83:3402–3410

    Article  CAS  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  CAS  PubMed  Google Scholar 

  • Indiveri G, Horiuchi T, Niebur E, Douglas RJ (2001) A competitive network of spiking VLSI neurons. In: Proceedings of the world congress on neuroinformatics, Vienna, Sept 2001, pp 443–455

    Google Scholar 

  • Massoud TM, Horiuchi TK (2011a) A neuromorphic VLSI head direction cell system. IEEE Trans Circuit Syst 58(1):150–163

    Article  Google Scholar 

  • Massoud TM, Horiuchi TK (2011b) Online correction of orientation estimates using spatial memory in a neuromorphic head direction system. International symposium on circuits and systems, ISCAS 2011, Rio de Janiero, pp 2429–2432

    Google Scholar 

  • Merolla PA, Boahen K (2006) Dynamic computation in a recurrent network of heterogeneous silicon neurons. Proc Intl Symp Circ Syst 2006:4807–4810

    Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci 31:69–89

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Res 34(1):171–175

    Article  PubMed  Google Scholar 

  • Redish AD, Elga AN, Touretzky DS (1996) A coupled attractor model of the rodent head direction system. Netw Comput Neural Syst 7(4):671–685

    Article  Google Scholar 

  • Sharp PE, Blair HT, Cho J (2001) The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci 24(5):289–294

    Article  CAS  PubMed  Google Scholar 

  • Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL (1995) A model of the neural basis of the rat’s sense of direction. Adv Neural Inf Proc Syst 7:173–180

    CAS  Google Scholar 

  • Song P, Wang XJ (2005) Angular path integration by moving “hill of activity”: a spiking neuron model without recurrent excitation of the head-direction system. J Neurosci 25:1002–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridharan D, Percival B, Arthur J, Boahen K (2008) An in-silico neural model of dynamic routing through neuronal coherence. In: Koller D, Singer Y, Platt J (eds) Advances in neural information processing systems 20. MIT Press, Cambridge, MA, pp 1401–1408

    Google Scholar 

  • Sridharan D, Millner S, Arthur J, Boahen K (2010) Robust spatial working memory through inhibitory gamma synchrony. Conference abstract: computational and systems neuroscience 2010. https://doi.org/10.3389/conf.fnins.2010.03.00012

  • Stackman RW, Taube JS (1997) Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input. J Neurosci 17(11):4349–4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton P et al (2009) Automatic calibration of a spiking head-direction network for representing robot orientation. Presented at the Australian conference on robotics and automation, Sydney

    Google Scholar 

  • Taube JS (2001) Sensory determinants of head direction cell activity. In: Sharp PE (ed) The neural basis of navigation: evidence from single cell recording. Kluwer, Boston

    Google Scholar 

  • Taube JS, Bassett JP (2003) Persistent neural activity in head direction cells. Cereb Cortex 2003(13):1162–1172

    Article  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10(2):420–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10(2):436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolpert S (1996) A parametric examination of VLSI-based neuronal models of cyclic and reciprocal inhibition. IEEE Trans Biomed Eng 43(12):1164–1175

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Hahnloser RH, Seung S (2002) Double-ring network model of the head-direction system. Phys Rev E Stat Nonlin Soft Matter Phys 66:041902

    Article  PubMed  CAS  Google Scholar 

  • Zhang K (1996) Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci 16(6):2112–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Horiuchi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Horiuchi, T.K., Massoud, T.M. (2022). Neuromorphic Sensors, Head Direction. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1006-0_117

Download citation

Publish with us

Policies and ethics