Skip to main content

Sequencing of Complete Chloroplast Genomes

  • Protocol
  • First Online:
Molecular Plant Taxonomy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2222))

Abstract

In this chapter, frequently used methods for elucidating sequence and structure of chloroplast genomes are reviewed, as a current best practice guide. This concerns methods for DNA extraction, sequencing library preparation, and bioinformatics (assembly, verification, annotation, and sequence comparisons). Recommendations for standard data reporting practices are given—chloroplast genome sequencing reports can be highly formalized, and publication in the form of standard data reports is the best option for comparison and meta-analysis purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  CAS  PubMed  Google Scholar 

  2. Khan A, Khan I, Heinze B, Azim M (2012) The chloroplast genome sequence of date palm (Phoenix dactylifera L. cv. 'Aseel'). Plant Mol Biol Report 30(3):666–678

    Article  CAS  Google Scholar 

  3. Asif H, Khan A, Iqbal A, Khan IA, Heinze B, Azim MK (2013) The chloroplast genome sequence of Syzygium cumini (L.) and its relationship with other angiosperms. Tree Genet Genomes 9(3):867–877. https://doi.org/10.1007/s11295-013-0604-1

    Article  Google Scholar 

  4. Heinze B, Koziel-Monte A, Jahn D (2014) Analysis of variation in chloroplast DNA sequences. In: Besse P (ed) Molecular plant taxonomy, Methods in molecular biology, vol 1115. Humana Press, pp 85–120

    Google Scholar 

  5. Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, Csilléry K, Fady B, Fladung M, Fussi B, Gömöry D, González-Martínez SC, Grivet D, Gut M, Hansen OK, Heer K, Kaya Z, Krutovsky KV, Kersten B, Liepelt S, Opgenoorth L, Sperisen C, Ullrich KK, Vendramin GG, Westergren M, Ziegenhagen B, Alioto T, Gugerli F, Heinze B, Höhn M, Troggio M, Neale DB (2019) A reference genome sequence for the European silver fir (Abies alba Mill.): a community-generated genomic resource. G3 9(7):2039–2049. https://doi.org/10.1534/g3.119.400083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabater B (2018) Evolution and function of the chloroplast. Current investigations and perspectives. Int J Mol Sci 19(10):3095

    Article  PubMed Central  Google Scholar 

  7. Amiryousefi A, Hyvönen J, Poczai P (2018) The chloroplast genome sequence of bittersweet (Solanum dulcamara): plastid genome structure evolution in Solanaceae. PLoS One 13(4):e0196069. https://doi.org/10.1371/journal.pone.0196069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi C, Hu N, Huang H, Gao J, Zhao Y-J, Gao L-Z (2012) An improved chloroplast DNA extraction procedure for whole plastid genome sequencing. PLoS One 7(2):e31468. https://doi.org/10.1371/journal.pone.0031468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  10. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Reporter 1:19–21

    Article  CAS  Google Scholar 

  11. Heinze B (2007) A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods 3:4. https://doi.org/10.1186/1746-4811-3-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619. https://doi.org/10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  14. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):3. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  15. Jiang M, Chen H, He S, Wang L, Chen AJ, Liu C (2018) Sequencing, characterization, and comparative analyses of the plastome of Caragana rosea var. rosea. Int J Mol Sci 19(5):1419

    Article  PubMed Central  Google Scholar 

  16. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18–18. https://doi.org/10.1186/2047-217X-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18

    PubMed Central  Google Scholar 

  18. Jin J-J, Yu W-B, Yang J-B, Song Y, dePamphilis CW, Yi T-S, Li D-Z (2019) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. bioRxiv:256479. https://doi.org/10.1101/256479

  19. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41(13):e129–e129. https://doi.org/10.1093/nar/gkt371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol I (2017) ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res 27(5):768–777. https://doi.org/10.1101/gr.214346.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829. https://doi.org/10.1101/gr.074492.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bock DG, Andrew RL, Rieseberg LH (2014) On the adaptive value of cytoplasmic genomes in plants. Mol Ecol 23(20):4899–4911. https://doi.org/10.1111/mec.12920

    Article  PubMed  Google Scholar 

  23. Amiryousefi A, Hyvönen J, Poczai P (2018) IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34(17):3030–3031. https://doi.org/10.1093/bioinformatics/bty220

    Article  CAS  PubMed  Google Scholar 

  24. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20(17):3252–3255

    Article  CAS  PubMed  Google Scholar 

  25. Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13(1):715

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47(W1):W65–W73. https://doi.org/10.1093/nar/gkz345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017) GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45(W1):W6–W11. https://doi.org/10.1093/nar/gkx391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McKain MR, Hartsock RH, Wohl MM, Kellogg EA (2016) Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes. Bioinformatics 33(1):130–132. https://doi.org/10.1093/bioinformatics/btw583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kahraman K, Lucas SJ (2019) Comparison of different annotation tools for characterization of the complete chloroplast genome of Corylus avellana cv Tombul. BMC Genomics 20(1):874. https://doi.org/10.1186/s12864-019-6253-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32(1):11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52(5):267–274

    Article  CAS  PubMed  Google Scholar 

  33. Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24(6):861–862

    Article  CAS  PubMed  Google Scholar 

  34. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21(4):537–539

    Article  CAS  PubMed  Google Scholar 

  35. Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–4642. https://doi.org/10.1093/nar/29.22.4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33(16):2583–2585. https://doi.org/10.1093/bioinformatics/btx198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leese F, Mayer C, Held C (2008) Isolation of microsatellites from unknown genomes using known genomes as enrichment templates. Limnol Oceanogr Methods 6(9):412–426. https://doi.org/10.4319/lom.2008.6.412

    Article  CAS  Google Scholar 

  40. Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8(1):92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x

    Article  CAS  PubMed  Google Scholar 

  41. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(suppl 2):W273–W279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Katoh K, Misawa K, Ki K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rozewicki J, Li S, Amada KM, Standley DM, Katoh K (2019) MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res 47(W1):W5–W10. https://doi.org/10.1093/nar/gkz342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rozas J, Rozas R (1995) DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Bioinformatics 11(6):621–625. https://doi.org/10.1093/bioinformatics/11.6.621

    Article  CAS  Google Scholar 

  46. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34(12):3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  47. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lenz H, Rüdinger M, Volkmar U, Fischer S, Herres S, Grewe F, Knoop V (2010) Introducing the plant RNA editing prediction and analysis computer tool PREPACT and an update on RNA editing site nomenclature. Curr Genet 56(2):189–201. https://doi.org/10.1007/s00294-009-0283-5

    Article  CAS  PubMed  Google Scholar 

  49. Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res 37(Web Server issue):W253–W259. https://doi.org/10.1093/nar/gkp337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE (2005) Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33(4):1141–1153. https://doi.org/10.1093/nar/gki242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256. https://doi.org/10.1093/molbev/msn083

    Article  CAS  PubMed  Google Scholar 

  52. Lockwood JD, Aleksic JM, Zou J, Wang J, Liu J, Renner SS (2013) A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Mol Phylogenet Evol 69(3):717–727

    Article  PubMed  Google Scholar 

  53. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao F, Chen C, Arab DA, Du Z, He Y, Ho SYW (2019) EasyCodeML: a visual tool for analysis of selection using CodeML. Ecol Evol 9(7):3891–3898. https://doi.org/10.1002/ece3.5015

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  56. Swofford D (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4, vol Version 4.0. Sinauer Associates, Sunderland. https://doi.org/10.1111/j.0014-3820.2002.tb00191.x

    Book  Google Scholar 

  57. Dereeper A, Nicolas S, Le Cunff L, Bacilieri R, Doligez A, Peros J-P, Ruiz M, This P (2011) SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects. BMC Bioinformatics 12(1):134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fussi B (2010) Phylogeography, flowering phenology and cytonuclear interactions of Populus alba and P. tremula. Dissertation thesis, University of Vienna, Faculty of Life Sciences, Vienna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Heinze .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Data S1

Database (Excel table) of articles describing methods in chloroplast genome sequencing (XLSX 42 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heinze, B. (2021). Sequencing of Complete Chloroplast Genomes. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics