Skip to main content

Confocal Laser Microscopy Analysis of Listeria monocytogenes Biofilms and Spatially Organized Communities

  • Protocol
  • First Online:
Listeria Monocytogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2220))

Abstract

The behavior of Listeria monocytogenes communities in the food chain is closely associated with their spatial organization. Whether as biofilms on industrial surfaces or as microcolonies in food matrices, the resulting physiological diversification combined with the presence of extracellular polymeric substances (EPS) triggers emergent community functions involved in the pathogen survival and persistence (e.g., tolerance to dehydration, biocides, or preservatives). In this contribution, we present a noninvasive confocal laser microscopy (CLM) protocol allowing exploration of the spatial organization of L. monocytogenes communities on various inert or nutritive materials relevant for the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naïtali M, Briandet R (2015) Biofilm-associated persistence of food-borne pathogens. Food Microbiol 45:167–178. https://doi.org/10.1016/j.fm.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  2. Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the house of biofilm cells. J Bacteriol 189:7945–7947

    Article  CAS  Google Scholar 

  3. Jeanson S, Floury J, Gagnaire V, Lortal S, Thierry A (2015) Bacterial colonies in solid media and foods: a review on their growth and interactions with the micro-environment. Front Microbiol 6:1284. https://doi.org/10.3389/fmicb.2015.01284

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R (2017) Spatial organization plasticity as an adaptive driver of surface microbial communities. Front Microbiol 8:1–19

    Article  Google Scholar 

  5. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017–1032

    Article  CAS  Google Scholar 

  6. Colagiorgi A, Bruini I, Di Ciccio PA, Zanardi E, Ghidini S, Ianieri A (2017) Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 6:41

    Article  Google Scholar 

  7. Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16:32–46. https://doi.org/10.1038/nrmicro.2017.126

    Article  CAS  PubMed  Google Scholar 

  8. Van Cauteren D, Le Strat Y, Sommen C, Bruyand M, Tourdjman M, Jourdan-Da-Silva N et al (2018) Estimation De La Morbidité et De La Mortalité Liées aux infections D’Origine Alimentaire En France Métropolitaine, 2008-2013/estimates of food-related morbidity and mortality in metropolitan France, 2008-2013. Bull Epidémiologique Hebd 1:2–10

    Google Scholar 

  9. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdiowson M-A, Roy SL et al (2011) Foodborne illness acquired in the United States. Emerg Infect Dis 17:1338–1340

    PubMed Central  Google Scholar 

  10. Blackman IC, Frank JF (2016) Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J Food Prot 59:827–831

    Article  Google Scholar 

  11. Borucki MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Enviromental Microbiol 69:7336–7342

    Article  CAS  Google Scholar 

  12. Fagerlund A, Moretro T, Heir E, Briandet R, Langsrud S (2017) Cleaning and disinfection of biofilms composed of Listeria monocytogenes. Appl Environ Microbiol 83:1–21

    Article  Google Scholar 

  13. Lundén J, Autio T, Markkula A, Hellström S, Korkeala H (2003) Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants. Int J Food Microbiol 82:265–272. http://www.ncbi.nlm.nih.gov/pubmed/12593929

    Article  Google Scholar 

  14. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine M-N, Hebraud M (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68:728–737. https://doi.org/10.1128/AEM.68.2.728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Briandet R, Meylheuc T, Maher C, Bellon-Fontaine MN (1999) Listeria monocytogenes Scott a: cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. Appl Environ Microbiol 65:5328–5333

    Article  CAS  Google Scholar 

  16. dos Reis-Teixeira FB, Alves VF, de Martinis ECP (2017) Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces. Brazilian J Microbiol 48:587–591. https://doi.org/10.1016/j.bjm.2017.01.004

    Article  CAS  Google Scholar 

  17. Di Bonaventura G, Piccolomini R, Paludi D, D’Orio V, Vergara A, Conter M et al (2008) Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol 104:1552–1561

    Article  Google Scholar 

  18. Zetzmann M, Okshevsky M, Endres J, Sedlag A, Caccia N, Auchter M et al (2015) DNase-sensitive and -resistant modes of biofilm formation by Listeria monocytogenes. Front Microbiol 6:1–11

    Article  Google Scholar 

  19. Garmyn D, Gal L, Briandet R, Guilbaud M, Lemaître J-P, Hartmann A et al (2011) Evidence of autoinduction heterogeneity via expression of the Agr system of Listeria monocytogenes at the single-cell level. Appl Environ Microbiol 77:6286–6289. https://doi.org/10.1128/AEM.02891-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P (2008) Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74:4491–4497. https://doi.org/10.1128/AEM.00255-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guilbaud M, Piveteau P, Desvaux M, Brisse S, Briandet R (2015) Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Appl Environ Microbiol 81:1813–1819

    Article  Google Scholar 

  22. Verheyen D, Xu XM, Govaert M, Baka M, Skåra T, Van Impe JF (2019) Food microstructure and fat content affect growth morphology, growth kinetics, and the preferred phase for cell growth of Listeria monocytogenes in fish-based model systems. Appl Environ Microbiol 85(16):e00707–e00719. https://doi.org/10.1128/AEM.00707-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verheyen D, Baka M, Glorieux S, Duquenne B, Fraeye I, Skåra T et al (2018) Development of fish-based model systems with various microstructures. Food Res Int 106:1069–1076. https://doi.org/10.1016/j.foodres.2017.12.047

    Article  CAS  PubMed  Google Scholar 

  24. Balestrino D, Anne Hamon M, Dortet L, Nahori MA, Pizarro-Cerda J, Alignani D et al (2010) Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl Environ Microbiol 76:3625–3636

    Article  CAS  Google Scholar 

  25. Fortineau N, Trieu-Cuot P, Gaillot O, Pellegrini E, Berche P, Gaillard JL (2000) Optimization of green fluorescent protein expression vectors for in vitro and in vivo detection of Listeria monocytogenes. Res Microbiol 151:353–360. https://doi.org/10.1016/S0923-2508(00)00158-3

    Article  CAS  Google Scholar 

  26. Vincent WJB, Freisinger CM, Lam PY, Huttenlocher A, Sauer JD (2016) Macrophages mediate flagellin induced inflammasome activation and host defense in zebrafish. Cell Microbiol 18:591–604

    Article  CAS  Google Scholar 

  27. Fleurot I, Aigle M, Fleurot R, Darrigo C, Hennekinne JA, Gruss A et al (2014) Following pathogen development and gene expression in a food ecosystem: the case of a Staphylococcus aureus isolate in cheese. Appl Environ Microbiol 80:5106–5115

    Article  Google Scholar 

  28. Habimana O, Guillier L, Kulakauskas S, Briandet R (2011) Spatial competition with Lactococcus lactis in mixed-species continuous-flow biofilms inhibits Listeria monocytogenes growth. Biofouling 27:1065–1072. https://doi.org/10.1080/08927014.2011.626124

    Article  PubMed  Google Scholar 

  29. Daims H, Lücker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213

    Article  CAS  Google Scholar 

  30. Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, Vidakovic L, Díaz-Pascual F, Fong JCN, Dragoš A, Besharova O, Nadell CD, Sourjik V, Kovács AT, Yildiz Knut Drescher FH (2019) BiofilmQ: quantitative image analysis of microbial biofilm communities. Biorxiv https://doi.org/10.1101/735423

  31. Hynes E, Ogier JC, Delacroix-Buchet A (2000) Protocol for the manufacture of miniature washed-curd cheeses under controlled microbiological conditions. Int Dairy J 10:733–737

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the French National Agency for Research (program “PathoFood ANR-17-CE21-0002”) and by AgroParisTech (program “SBAO19-2”). Microscopic images were performed at the INRA MIMA2 imaging center. We thank Kevin Bascaran for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Briandet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Darsonval, M., Grégoire, M., Deschamps, J., Briandet, R. (2021). Confocal Laser Microscopy Analysis of Listeria monocytogenes Biofilms and Spatially Organized Communities. In: Fox, E.M., Bierne, H., Stessl, B. (eds) Listeria Monocytogenes. Methods in Molecular Biology, vol 2220. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0982-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0982-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0981-1

  • Online ISBN: 978-1-0716-0982-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics