Skip to main content

In Vivo Imaging of Protein Interactions in the Germplasm with Bimolecular Fluorescent Complementation

  • Protocol
  • First Online:
Germline Development in the Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2218))

Abstract

Protein–protein interactions (PPIs) play a central role in all cellular processes. The discovery of green fluorescent protein (GFP) and split varieties, which are functionally reconstituted by complementation, led to the development of the bimolecular fluorescence complementation (BiFC) assay for the investigation of PPI in vivo. BiFC became a popular tool, as it is a convenient and quick technology to directly visualize PPI in a wide variety of living cells. In combination with the transparency of the early zebrafish embryo, it also permits detection of PPI in the context of an entire living organism, which performs all spatial and temporal regulations missing in in vitro systems like tissue culture. However, the application of BiFC in some research areas including the study of zebrafish is limited due to the lack of efficient and convenient BiFC expression vectors. Here, we describe the engineering of a novel set of Gateway®-adapted BiFC destination vectors to investigate PPI with all possible permutations for BiFC experiments. Moreover, we demonstrate the versatility of these destination vectors by confirming the interaction between zebrafish Bucky ball and RNA helicase Vasa in living embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Filonov GS, Verkhusha VV (2013) A near-infrared bifc reporter for in vivo imaging of protein-protein interactions. Chem Biol 20:1078–1086. https://doi.org/10.1016/j.chembiol.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286. https://doi.org/10.1038/nprot.2006.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487. https://doi.org/10.1146/annurev.biophys.37.032807.125842.BIMOLECULAR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kodama Y, Hu CD (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. BioTechniques 53:285–298. https://doi.org/10.2144/000113943

    Article  CAS  PubMed  Google Scholar 

  5. Ghosh I, Hamilton AD, Regan L et al (2000) Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122(23):5658–5659

    Article  CAS  Google Scholar 

  6. Zhong S, Lin Z, Fray RG, Grierson D (2008) Improved plant transformation vectors for fluorescent protein tagging. Transgenic Res 17:985–989. https://doi.org/10.1007/s11248-008-9199-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Free RB, Hazelwood LA, Sibley DR (2009) Identifying novel protein-protein interactions using co-IP and mass spectrometry. Curr Protoc Neurosci 2:1–19. https://doi.org/10.1002/0471142301.ns0528s46.Identifying

    Article  Google Scholar 

  8. Kamigaki A, Nito K, Hikino K et al (2016) Gateway vectors for simultaneous detection of multiple protein-protein interactions in plant cells using bimolecular fluorescence complementation. PLoS One 11:1–15. https://doi.org/10.1371/journal.pone.0160717

    Article  CAS  Google Scholar 

  9. Zhang XE, Cui Z, Wang D (2016) Sensing of biomolecular interactions using fluorescence complementing systems in living cells. Biosens Bioelectron 76:243–250. https://doi.org/10.1016/j.bios.2015.07.069

    Article  CAS  PubMed  Google Scholar 

  10. Cieri D, Vicario M, Giacomello M et al (2018) SPLICS: A split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ 25:1131–1145. https://doi.org/10.1038/s41418-017-0033-z

    Article  CAS  PubMed  Google Scholar 

  11. Feng S, Varshney A, Villa DC et al (2018) Bright split red fluorescent proteins with enhanced complementation efficiency for the tagging of endogenous proteins and visualization of synapses. bioRxiv 2018:454041. https://doi.org/10.1101/454041

    Article  CAS  Google Scholar 

  12. Han Y, Wang S, Zhang Z et al (2014) In vivo imaging of protein-protein and RNA-protein interactions using novel far-red fluorescence complementation systems. Nucleic Acids Res 2014:42. https://doi.org/10.1093/nar/gku408

    Article  CAS  Google Scholar 

  13. Bischof J, Duffraisse M, Furger E et al (2018) Generation of a versatile bifc orfeome library for analyzing protein–protein interactions in live drosophila. elife 7:1–24. https://doi.org/10.7554/eLife.38853

    Article  Google Scholar 

  14. Summary M (2018) Kusabira-Orange protein:64. https://doi.org/10.4155/btn-2017-0121

  15. Verhoef LGGC, Wade M (2017) Visualization of protein interactions in living cells using bimolecular luminescence complementation (BiLC). Curr Protoc Protein Sci 90:30.5.1–30.5.14. https://doi.org/10.1002/cpps.42

    Article  CAS  Google Scholar 

  16. Miles LB, Verkade H (2014) TA-cloning vectors for rapid and cheap cloning of zebrafish transgenesis constructs. Zebrafish 11:281–282. https://doi.org/10.1089/zeb.2013.0954

    Article  PubMed  Google Scholar 

  17. Villefranc JA, Amigo J, Lawson ND (2007) Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236:3077–3087. https://doi.org/10.1002/dvdy.21354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction Kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099. https://doi.org/10.1002/dvdy.21343

    Article  CAS  PubMed  Google Scholar 

  19. Krishnakumar P, Riemer S, Perera R et al (2018) Functional equivalence of germ plasm organizers. PLoS Genet 14:1–29. https://doi.org/10.1371/journal.pgen.1007696

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roshan Priyarangana Perera or Roland Dosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perera, R.P., Dosch, R. (2021). In Vivo Imaging of Protein Interactions in the Germplasm with Bimolecular Fluorescent Complementation. In: Dosch, R. (eds) Germline Development in the Zebrafish. Methods in Molecular Biology, vol 2218. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0970-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0970-5_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0969-9

  • Online ISBN: 978-1-0716-0970-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics