Skip to main content

Functional Integrin Regulation Through Interactions with Tetraspanin CD9

  • Protocol
  • First Online:
The Integrin Interactome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2217))

Abstract

Integrins are adhesion receptors that mediate many intercellular and cell–extracellular matrix interactions with relevance in physiology and pathology. Unlike other cellular receptors, integrins critically require activation for ligand binding. Through interaction in cis with other molecules and the formation of tetraspanin-enriched membrane microdomains (TEMs), the tetraspanin CD9 regulates integrin activity and avidity. Here we present three techniques used to study CD9–integrin interactions and integrin activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420(2):133–154

    Article  CAS  Google Scholar 

  2. Reyes R, Monjas A, Yanez-Mo M, Cardenes B, Morlino G, Gilsanz A, Machado-Pineda Y, Lafuente E, Monk P, Sanchez-Madrid F, Cabanas C (2015) Different states of integrin LFA-1 aggregation are controlled through its association with tetraspanin CD9. Biochim Biophys Acta 1853(10 Pt A):2464–2480. https://doi.org/10.1016/j.bbamcr.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  3. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446. https://doi.org/10.1016/j.tcb.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  4. Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28(2):106–112

    Article  CAS  Google Scholar 

  5. Cabanas C, Yanez-Mo M, van Spriel AB (2019) Editorial: functional relevance of tetraspanins in the immune system. Front Immunol 10:1714. https://doi.org/10.3389/fimmu.2019.01714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reyes R, Cardenes B, Machado-Pineda Y, Cabanas C (2018) Tetraspanin CD9: a key regulator of cell adhesion in the immune system. Front Immunol 9:863. https://doi.org/10.3389/fimmu.2018.00863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tarrant JM, Robb L, van Spriel AB, Wright MD (2003) Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol 24(11):610–617

    Article  CAS  Google Scholar 

  8. Yanez-Mo M, Gutierrez-Lopez MD, Cabanas C (2011) Functional interplay between tetraspanins and proteases. Cell Mol Life Sci 68(20):3323–3335. https://doi.org/10.1007/s00018-011-0746-y

    Article  CAS  PubMed  Google Scholar 

  9. Machado-Pineda Y, Cardenes B, Reyes R, Lopez-Martin S, Toribio V, Sanchez-Organero P, Suarez H, Grotzinger J, Lorenzen I, Yanez-Mo M, Cabanas C (2018) CD9 controls integrin alpha5beta1-mediated cell adhesion by modulating its association with the metalloproteinase ADAM17. Front Immunol 9:2474. https://doi.org/10.3389/fimmu.2018.02474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodriguez-Fernandez JL, Sanchez-Martin L, Rey M, Vicente-Manzanares M, Narumiya S, Teixido J, Sanchez-Madrid F, Cabanas C (2001) Rho and Rho-associated kinase modulate the tyrosine kinase PYK2 in T-cells through regulation of the activity of the integrin LFA-1. J Biol Chem 276(44):40518–40527

    Article  CAS  Google Scholar 

  11. Yanez-Mo M, Alfranca A, Cabanas C, Marazuela M, Tejedor R, Ursa MA, Ashman LK, de Landazuri MO, Sanchez-Madrid F (1998) Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 beta1 integrin localized at endothelial lateral junctions. J Cell Biol 141(3):791–804

    Article  CAS  Google Scholar 

  12. Campanero MR, del Pozo MA, Arroyo AG, Sanchez-Mateos P, Hernandez-Caselles T, Craig A, Pulido R, Sanchez-Madrid F (1993) ICAM-3 interacts with LFA-1 and regulates the LFA-1/ICAM-1 cell adhesion pathway. J Cell Biol 123(4):1007–1016

    Article  CAS  Google Scholar 

  13. Keizer GD, Borst J, Figdor CG, Spits H, Miedema F, Terhorst C, De Vries JE (1985) Biochemical and functional characteristics of the human leukocyte membrane antigen family LFA-1, Mo-1 and p150,95. Eur J Immunol 15(11):1142–1148

    Article  CAS  Google Scholar 

  14. Cabanas C, Sanchez-Madrid F, Acevedo A, Bellon T, Fernandez JM, Larraga V, Bernabeu C (1988) Characterization of a CD11c-reactive monoclonal antibody (HC1/1) obtained by immunizing with phorbol ester differentiated U937 cells. Hybridoma 7(2):167–176

    Article  CAS  Google Scholar 

  15. Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA (1983) A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med 158(6):1785–1803

    Article  CAS  Google Scholar 

  16. Barreiro O, Yanez-Mo M, Sala-Valdes M, Gutierrez-Lopez MD, Ovalle S, Higginbottom A, Monk PN, Cabanas C, Sanchez-Madrid F (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105(7):2852–2861

    Article  CAS  Google Scholar 

  17. Gilsanz A, Sanchez-Martin L, Gutierrez-Lopez MD, Ovalle S, Machado-Pineda Y, Reyes R, Swart GW, Figdor CG, Lafuente EM, Cabanas C (2013) ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell Mol Life Sci 70(3):475–493. https://doi.org/10.1007/s00018-012-1132-0

    Article  CAS  PubMed  Google Scholar 

  18. Higginbottom A, Takahashi Y, Bolling L, Coonrod SA, White JM, Partridge LJ, Monk PN (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311(1):208–214

    Article  CAS  Google Scholar 

  19. Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516(1–3):139–144. https://doi.org/10.1016/s0014-5793(02)02522-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cabañas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Torres-Gómez, Á., Cardeñes, B., Díez-Sainz, E., Lafuente, E.M., Cabañas, C. (2021). Functional Integrin Regulation Through Interactions with Tetraspanin CD9. In: Vicente-Manzanares, M. (eds) The Integrin Interactome. Methods in Molecular Biology, vol 2217. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0962-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0962-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0961-3

  • Online ISBN: 978-1-0716-0962-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics