Skip to main content

A Versatile Protocol to Generate Translocations in Yeast Genomes Using CRISPR/Cas9

  • Protocol
  • First Online:
Yeast Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2196))

Abstract

Genomic engineering methods represent powerful tools to examine chromosomal modifications and to subsequently study their impacts on cellular phenotypes. However, quantifying the fitness impact of translocations, independently from base substitutions or the insertion of genetic markers, remains a challenge. Here we report a rapid and straightforward protocol for engineering either targeted reciprocal translocations at the base pair level of resolution between two chromosomes or multiple simultaneous rearrangements in the yeast genome, without inserting any marker sequence in the chromosomes. Our CRISPR/Cas9-based method consists of inducing either (1) two double-strand breaks (DSBs) in two different chromosomes with two distinct guide RNAs (gRNAs) while providing specifically designed homologous donor DNA forcing the trans-repair of chromosomal extremities to generate a targeted reciprocal translocation or (2) multiple DSBs with a single gRNA targeting dispersed repeated sequences and leaving endogenous uncut copies of the repeat to be used as donor DNA, thereby generating multiple translocations, often associated with large segmental duplications (Fleiss, et al. PLoS Genet 15:e1008332, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argueso JL, Westmoreland J, Mieczkowski PA et al (2008) Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci U S A 105:11845–11850

    Article  Google Scholar 

  2. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297–308

    Article  CAS  Google Scholar 

  3. Piazza A, Wright WD, Heyer W-D (2017) Multi-invasions are recombination byproducts that induce chromosomal rearrangements. Cell 170:760–773.e15

    Article  CAS  Google Scholar 

  4. Rudin N, Haber JE (1988) Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol 8:3918–3928

    Article  CAS  Google Scholar 

  5. Fasullo MT, Davis RW (1988) Direction of chromosome rearrangements in Saccharomyces cerevisiae by use of his3 recombinational substrates. Mol Cell Biol 8:4370–4380

    Article  CAS  Google Scholar 

  6. Fairhead C, Llorente B, Denis F et al (1996) New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using “split-marker” recombination. Yeast 12:1439–1457

    Article  CAS  Google Scholar 

  7. Dresser ME, Ewing DJ, Harwell SN et al (1994) Nonhomologous synapsis and reduced crossing over in a heterozygous Paracentric inversion in Saccharomyces cerevisiae. Genetics 138(3):633–647

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700

    Article  CAS  Google Scholar 

  9. Storici F, Resnick MA (2006) The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol 409:329–345

    Article  CAS  Google Scholar 

  10. Avelar AT, Perfeito L, Gordo I et al (2013) Genome architecture is a selectable trait that can be maintained by antagonistic pleiotropy. Nat Commun 4:2235

    Article  Google Scholar 

  11. Delneri D, Colson I, Grammenoudi S et al (2003) Engineering evolution to study speciation in yeasts. Nature 422:68–72

    Article  CAS  Google Scholar 

  12. Naseeb S, Delneri D (2012) Impact of chromosomal inversions on the yeast DAL cluster. PLoS One 7:42022

    Article  CAS  Google Scholar 

  13. Naseeb S, Carter Z, Minnis D et al (2016) Widespread impact of chromosomal inversions on gene expression uncovers robustness via phenotypic buffering. Mol Biol Evol 33:1679–1696

    Article  CAS  Google Scholar 

  14. Annaluru N, Muller H, Mitchell LA et al (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344:55–58

    Article  CAS  Google Scholar 

  15. Hochrein L, Mitchell LA, Schulz K et al (2018) L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nat Commun 9:1931

    Article  CAS  Google Scholar 

  16. Jia B, Wu Y, Li B-Z et al (2018) Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat Commun 9:1933

    Article  CAS  Google Scholar 

  17. Shen Y, Stracquadanio G, Wang Y et al (2016) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 26:36–49

    Article  CAS  Google Scholar 

  18. Muramoto N, Oda A, Tanaka H et al (2018) Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks. Nat Commun 9:1995

    Article  CAS  Google Scholar 

  19. Brunet E, Simsek D, Tomishima M et al (2009) Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci U S A 106:10620–10625

    Article  Google Scholar 

  20. Piganeau M, Ghezraoui H, De Cian A et al (2013) Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 23:1182–1193

    Article  CAS  Google Scholar 

  21. Richard G-F, Viterbo D, Khanna V et al (2014) Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS One 9:95611

    Article  Google Scholar 

  22. Xiao A, Wang Z, Hu Y et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41:141–141

    Article  CAS  Google Scholar 

  23. Doudna JA, Charpentier E (2014) The new frontier of genome engineering. Science 346:1258096

    Article  CAS  Google Scholar 

  24. Wang F, Qi LS (2016) Applications of CRISPR genome engineering in cell biology. Trends Cell Biol 26:875–888

    Article  CAS  Google Scholar 

  25. DiCarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  Google Scholar 

  26. Vanoli F, Tomishima M, Feng W et al (2017) CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc Natl Acad Sci U S A 114:3696–3701

    Article  CAS  Google Scholar 

  27. Fleiss A, O’Donnell S, Fournier T et al (2019) Reshuffling yeast chromosomes with CRISPR/Cas9. PLoS Genet 15:e1008332

    Article  CAS  Google Scholar 

  28. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  CAS  Google Scholar 

  29. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  Google Scholar 

  30. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche [ANR-16-CE12-0019]. We thank Allyson Holmes and Samuel O’Donnell for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Agier, N., Fleiss, A., Delmas, S., Fischer, G. (2021). A Versatile Protocol to Generate Translocations in Yeast Genomes Using CRISPR/Cas9. In: Xiao, W. (eds) Yeast Protocols. Methods in Molecular Biology, vol 2196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0868-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0868-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0867-8

  • Online ISBN: 978-1-0716-0868-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics