Skip to main content

Inorganic Nanoparticles and Their Strategies to Enhance Brain Drug Delivery

  • Protocol
  • First Online:
Nanomedicines for Brain Drug Delivery

Part of the book series: Neuromethods ((NM,volume 157))

Abstract

The main obstacle for brain drug delivery after systemic administration is the presence of the blood-brain barrier (BBB). The use of drug nanocarriers to overcome this selective barrier that isolates the central nervous system (CNS) has been widely studied in recent years. Among the different nanoparticles described in literature, inorganic nanoparticles such as gold, iron oxide, carbon, silver, and others have been studied for brain drug delivery. Here, we describe the strategies employed with different inorganic nanoparticles to reach the CNS, which in general used targeting molecules that can facilitate the transport across the BBB through transport mechanisms such as adsorptive-mediated transcytosis and receptor-mediated transport or the use of peptide vectors. Throughout this chapter, examples of diverse nanosystems will be given, highlighting the main research objectives, their characteristics, and the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang X (2013) Brain drug delivery systems. Pharm Res 30(10):2427–2428. https://doi.org/10.1007/s11095-013-1148-7

    Article  CAS  PubMed  Google Scholar 

  2. Hwang SR, Kim K (2014) Nano-enabled delivery systems across the blood-brain barrier. Arch Pharm Res 37(1):24–30. https://doi.org/10.1007/s12272-013-0272-6

    Article  CAS  PubMed  Google Scholar 

  3. Leyva-Gomez G, Cortes H, Magana JJ, Leyva-Garcia N, Quintanar-Guerrero D, Floran B (2015) Nanoparticle technology for treatment of Parkinson’s disease: the role of surface phenomena in reaching the brain. Drug Discov Today 20(7):824–837. https://doi.org/10.1016/j.drudis.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G, Cui Y, Savina IN, Mikhalovska LI, Sandeman SR, Howel CA, Mikhalovsky SV (2017) Nano carriers for drug transport across the blood-brain barrier. J Drug Target 25(1):17–28. https://doi.org/10.1080/1061186X.2016.1184272

    Article  CAS  PubMed  Google Scholar 

  5. Velasco-Aguirre C, Morales F, Gallardo-Toledo E, Guerrero S, Giralt E, Araya E, Kogan MJ (2015) Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int J Nanomedicine 10:4919–4936. https://doi.org/10.2147/IJN.S82310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie J, Lee S, Chen XY (2010) Nanoparticle-based theranostic agents. Adv Drug Deliver Rev 62(11):1064–1079. https://doi.org/10.1016/j.addr.2010.07.009

    Article  CAS  Google Scholar 

  7. Tsou YH, Zhang XQ, Zhu H, Syed S, Xu X (2017) Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 13(43). https://doi.org/10.1002/smll.201701921

  8. Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, Selva J, Egea G, Lopez-Iglesias C, Teixido M, Kogan MJ, Giralt E (2012) Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 33(29):7194–7205. https://doi.org/10.1016/j.biomaterials.2012.06.063

    Article  CAS  PubMed  Google Scholar 

  9. Araya E, Olmedo I, Bastus NG, Guerrero S, Puntes VF, Giralt E, Kogan MJ (2008) Gold nanoparticles and microwave irradiation inhibit beta-amyloid amyloidogenesis. Nanoscale Res Lett 3(11):435–443. https://doi.org/10.1007/s11671-008-9178-5

    Article  CAS  PubMed Central  Google Scholar 

  10. Triulzi RC, Dai Q, Zou J, Leblanc RM, Gu Q, Orbulescu J, Huo Q (2008) Photothermal ablation of amyloid aggregates by gold nanoparticles. Colloids Surf B Biointerfaces 63(2):200–208. https://doi.org/10.1016/j.colsurfb.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  11. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28. https://doi.org/10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  12. Perrault SD, Chan WC (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131(47):17042–17043. https://doi.org/10.1021/ja907069u

    Article  CAS  PubMed  Google Scholar 

  13. Krol S (2012) Challenges in drug delivery to the brain: nature is against us. J Control Release 164(2):145–155. https://doi.org/10.1016/j.jconrel.2012.04.044

    Article  CAS  PubMed  Google Scholar 

  14. Egleton RD, Mitchell SA, Huber JD, Janders J, Stropova D, Polt R, Yamamura HI, Hruby VJ, Davis TP (2000) Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res 881(1):37–46

    Article  CAS  Google Scholar 

  15. Bilsky EJ, Egleton RD, Mitchell SA, Palian MM, Davis P, Huber JD, Jones H, Yamamura HI, Janders J, Davis TP, Porreca F, Hruby VJ, Polt R (2000) Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J Med Chem 43(13):2586–2590

    Article  CAS  Google Scholar 

  16. Morris MC, Deshayes S, Heitz F, Divita G (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100(4):201–217. https://doi.org/10.1042/BC20070116

    Article  CAS  PubMed  Google Scholar 

  17. Mager I, Eiriksdottir E, Langel K, El Andaloussi S, Langel U (2010) Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochim Biophys Acta 1798(3):338–343. https://doi.org/10.1016/j.bbamem.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez-Carneado J, Kogan MJ, Castel S, Giralt E (2004) Potential peptide carriers: amphipathic proline-rich peptides derived from the N-terminal domain of gamma-zein. Angew Chem 43(14):1811–1814. https://doi.org/10.1002/anie.200352540

    Article  CAS  Google Scholar 

  19. Pujals S, Sabido E, Tarrago T, Giralt E (2007) all-D proline-rich cell-penetrating peptides: a preliminary in vivo internalization study. Biochem Soc Trans 35(Pt 4):794–796. https://doi.org/10.1042/BST0350794

    Article  CAS  PubMed  Google Scholar 

  20. Madani F, Lindberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729. https://doi.org/10.1155/2011/414729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guerrero S, Araya E, Fiedler JL, Arias JI, Adura C, Albericio F, Giralt E, Arias JL, Fernandez MS, Kogan MJ (2010) Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine 5(6):897–913. https://doi.org/10.2217/nnm.10.74

    Article  CAS  PubMed  Google Scholar 

  22. Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4(7):822–826

    Article  CAS  Google Scholar 

  23. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7):907–913. https://doi.org/10.1038/nm890

    Article  CAS  PubMed  Google Scholar 

  24. Sousa F, Mandal S, Garrovo C, Astolfo A, Bonifacio A, Latawiec D, Menk RH, Arfelli F, Huewel S, Legname G, Galla HJ, Krol S (2010) Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2(12):2826–2834. https://doi.org/10.1039/c0nr00345j

    Article  CAS  PubMed  Google Scholar 

  25. Schaffler M, Sousa F, Wenk A, Sitia L, Hirn S, Schleh C, Haberl N, Violatto M, Canovi M, Andreozzi P, Salmona M, Bigini P, Kreyling WG, Krol S (2014) Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 35(10):3455–3466. https://doi.org/10.1016/j.biomaterials.2013.12.100

    Article  CAS  PubMed  Google Scholar 

  26. Shilo M, Berenstein P, Dreifuss T, Nash Y, Goldsmith G, Kazimirsky G, Motiei M, Frenkel D, Brodie C, Popovtzer R (2015) Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation. Nanoscale 7(48):20489–20496. https://doi.org/10.1039/c5nr04881h

    Article  CAS  PubMed  Google Scholar 

  27. Olmedo I, Araya E, Sanz F, Medina E, Arbiol J, Toledo P, Alvarez-Lueje A, Giralt E, Kogan MJ (2008) How changes in the sequence of the peptide CLPFFD-NH2 can modify the conjugation and stability of gold nanoparticles and their affinity for beta-amyloid fibrils. Bioconjug Chem 19(6):1154–1163. https://doi.org/10.1021/bc800016y

    Article  CAS  PubMed  Google Scholar 

  28. Bower PV, Louie EA, Long JR, Stayton PS, Drobny GP (2005) Solid-state NMR structural studies of peptides immobilized on gold nanoparticles. Langmuir 21(7):3002–3007. https://doi.org/10.1021/la040092w

    Article  CAS  PubMed  Google Scholar 

  29. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767(9):1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  30. Arif M, Karthigeyan D, Siddhanta S, Kumar GV, Narayana C, Kundu TK (2013) Analysis of protein acetyltransferase structure-function relation by surface-enhanced raman scattering (SERS): a tool to screen and characterize small molecule modulators. Methods Mol Biol 981:239–261. https://doi.org/10.1007/978-1-62703-305-3_19

    Article  CAS  PubMed  Google Scholar 

  31. Riveros A, Dadlani K, Salas-Huenuleo E, Caballero L, Melo F, Kogan M (2013) Gold nanoparticle-membrane interactions: implications in biomedicine. J Biomater Tissue Eng 3. https://doi.org/10.1166/jbt.2013.1067

  32. Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9(2):228–232

    Article  CAS  Google Scholar 

  33. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415. https://doi.org/10.1007/s11671-008-9174-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. https://doi.org/10.1021/cr068445e

    Article  CAS  PubMed  Google Scholar 

  35. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  36. Corot C, Violas X, Robert P, Gagneur G, Port M (2003) Comparison of different types of blood pool agents (P792, MS325, USPIO) in a rabbit MR angiography-like protocol. Investig Radiol 38(6):311–319

    CAS  Google Scholar 

  37. Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1(2):157–168. https://doi.org/10.2217/17435889.1.2.157

    Article  CAS  PubMed  Google Scholar 

  38. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331. https://doi.org/10.1007/s003300100908

    Article  CAS  PubMed  Google Scholar 

  39. Lanza GM, Winter PM, Caruthers SD, Morawski AM, Schmieder AH, Crowder KC, Wickline SA (2004) Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11(6):733–743

    Article  Google Scholar 

  40. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175. https://doi.org/10.1039/b402025a

    Article  CAS  Google Scholar 

  41. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Engl J Med 348(25):2491–U2495. https://doi.org/10.1056/Nejmoa022749

    Article  PubMed  Google Scholar 

  42. Xu CJ, Sun SH (2007) Monodisperse magnetic nanoparticles for biomedical applications. Polym Int 56(7):821–826. https://doi.org/10.1002/pi.2251

    Article  CAS  Google Scholar 

  43. Jun YW, Seo JW, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41(2):179–189. https://doi.org/10.1021/ar700121f

    Article  CAS  PubMed  Google Scholar 

  44. Skaat H, Corem-Slakmon E, Grinberg I, Last D, Goez D, Mardor Y, Margel S (2013) Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-beta fibrils. Int J Nanomedicine 8:4063–4076. https://doi.org/10.2147/IJN.S52833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, Visser GM, Moos T (2013) Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4(10):1352–1360. https://doi.org/10.1021/cn400093z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yim YS, Choi JS, Kim GT, Kim CH, Shin TH, Kim DG, Cheon J (2012) A facile approach for the delivery of inorganic nanoparticles into the brain by passing through the blood-brain barrier (BBB). Chem Commun 48(1):61–63. https://doi.org/10.1039/c1cc15113d

    Article  CAS  Google Scholar 

  47. Qiao RR, Jia QJ, Huwel S, Xia R, Liu T, Gao FB, Galla HJ, Gao MY (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6(4):3304–3310. https://doi.org/10.1021/nn300240p

    Article  CAS  PubMed  Google Scholar 

  48. Zhao M, Liang C, Li A, Chang J, Wang H, Yan R, Zhang J, Tai J (2010) Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts. Anticancer Res 30(6):2217–2223

    CAS  PubMed  Google Scholar 

  49. Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108(42):17450–17455. https://doi.org/10.1073/pnas.1114518108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fiandra L, Colombo M, Mazzucchelli S, Truffi M, Santini B, Allevi R, Nebuloni M, Capetti A, Rizzardini G, Prosperi D, Corsi F (2015) Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine 11(6):1387–1397. https://doi.org/10.1016/j.nano.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  51. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891. https://doi.org/10.1016/0008-6223(95)00017-8

    Article  CAS  Google Scholar 

  52. Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59. https://doi.org/10.1038/34139

    Article  Google Scholar 

  53. Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors—a review. IEEE Sensors J 7(2):266–284. https://doi.org/10.1109/JSEN.2006.886863

    Article  CAS  Google Scholar 

  54. Sanginario A, Miccoli B, Demarchi D (2017) Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors 7(1). https://doi.org/10.3390/bios7010009

  55. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2(2):108–113. https://doi.org/10.1038/nnano.2006.209

    Article  CAS  PubMed  Google Scholar 

  56. Jin H, Heller DA, Strano MS (2008) Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 8(6):1577–1585. https://doi.org/10.1021/nl072969s

    Article  PubMed  Google Scholar 

  57. Shityakov S, Salvador E, Pastorin G, Forster C (2015) Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. Int J Nanomedicine 10:1703–1713. https://doi.org/10.2147/IJN.S68429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hernandez-Rivera M, Zaibaq NG, Wilson LJ (2016) Toward carbon nanotube-based imaging agents for the clinic. Biomaterials 101:229–240. https://doi.org/10.1016/j.biomaterials.2016.05.045

    Article  CAS  PubMed  Google Scholar 

  59. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65(15):1964–2015. https://doi.org/10.1016/j.addr.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  60. Singh R, Torti SV (2013) Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 65(15):2045–2060. https://doi.org/10.1016/j.addr.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang L, Lv D, Su W, Liu Y, Chen Y, Xiang R (2013) Detection of cancer biomarkers with nanotechnology. Am J Biochem Biotechnol 9(1):71

    Article  CAS  Google Scholar 

  62. Kafa H, Wang JT, Rubio N, Venner K, Anderson G, Pach E, Ballesteros B, Preston JE, Abbott NJ, Al-Jamal KT (2015) The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 53:437–452. https://doi.org/10.1016/j.biomaterials.2015.02.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee HJ, Park J, Yoon OJ, Kim HW, Lee DY, Kim DH, Lee WB, Lee NE, Bonventre JV, Kim SS (2011) Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol 6(2):121–125. https://doi.org/10.1038/nnano.2010.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos K, Pizzorusso T (2011) Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci U S A 108(27):10952–10957. https://doi.org/10.1073/pnas.1100930108

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C (2010) Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 6(3):427–441. https://doi.org/10.1016/j.nano.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  66. VanHandel M, Alizadeh D, Zhang L, Kateb B, Bronikowski M, Manohara H, Badie B (2009) Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol 208(1–2):3–9. https://doi.org/10.1016/j.jneuroim.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  67. Zhao D, Alizadeh D, Zhang L, Liu W, Farrukh O, Manuel E, Diamond DJ, Badie B (2011) Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin Cancer Res 17(4):771–782. https://doi.org/10.1158/1078-0432.CCR-10-2444

    Article  CAS  PubMed  Google Scholar 

  68. Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, Qian Y, Sun X, Jiang X (2012) The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 33(11):3324–3333. https://doi.org/10.1016/j.biomaterials.2012.01.025

    Article  CAS  PubMed  Google Scholar 

  69. Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hassan M (2007) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196

    Google Scholar 

  70. Chen J, Han CM, Lin XW, Tang ZJ, Su SJ (2006) Effect of silver nanoparticle dressing on second degree burn wound. Chin J Surg 44(1):50–52

    PubMed  Google Scholar 

  71. Lu S, Gao W, Gu HY (2008) Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34(5):623–628. https://doi.org/10.1016/j.burns.2007.08.020

    Article  PubMed  Google Scholar 

  72. Sun H, Choy TS, Zhu DR, Yam WC, Fung YS (2009) Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosens Bioelectron 24(5):1405–1410. https://doi.org/10.1016/j.bios.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  73. Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30(31):6341–6350. https://doi.org/10.1016/j.biomaterials.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  74. Kalishwaralal K, Banumathi E, Ram Kumar Pandian S, Deepak V, Muniyandi J, Eom SH, Gurunathan S (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces 73(1):51–57. https://doi.org/10.1016/j.colsurfb.2009.04.025

    Article  CAS  PubMed  Google Scholar 

  75. Sharma HS, Ali SF, Hussain SM, Schlager JJ, Sharma A (2009) Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol 9(8):5055–5072

    Article  CAS  Google Scholar 

  76. Sharma HS, Ali SF, Tian ZR, Hussain SM, Schlager JJ, Sjoquist PO, Sharma A, Muresanu DF (2009) Chronic treatment with nanoparticles exacerbate hyperthermia induced blood-brain barrier breakdown, cognitive dysfunction and brain pathology in the rat. Neuroprotective effects of nanowired-antioxidant compound H-290/51. J Nanosci Nanotechnol 9(8):5073–5090

    Article  CAS  Google Scholar 

  77. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932

    Article  CAS  Google Scholar 

  78. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl 4):547–551

    Article  CAS  Google Scholar 

  79. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Wan Z, Xi T (2008) Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl Surf Sci 255(2):502–504. https://doi.org/10.1016/j.apsusc.2008.06.058

    Article  CAS  Google Scholar 

  80. Tang J, Xiong L, Zhou G, Wang S, Wang J, Liu L, Li J, Yuan F, Lu S, Wan Z, Chou L, Xi T (2010) Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro. J Nanosci Nanotechnol 10(10):6313–6317

    Article  CAS  Google Scholar 

  81. Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W Jr, Hussain SM, Ali SF (2010) Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118(1):160–170. https://doi.org/10.1093/toxsci/kfq244

    Article  CAS  PubMed  Google Scholar 

  82. Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, Chen S, Goode AE, Theodorou IG, Chung KF, Carzaniga R, Shaffer MS, Dexter DT, Ryan MP, Porter AE (2017) Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep 7:42871. https://doi.org/10.1038/srep42871

    Article  PubMed  PubMed Central  Google Scholar 

  83. Locatelli E, Naddaka M, Uboldi C, Loudos G, Fragogeorgi E, Molinari V, Pucci A, Tsotakos T, Psimadas D, Ponti J, Franchini MC (2014) Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 9(6):839–849. https://doi.org/10.2217/nnm.14.1

    Article  CAS  PubMed  Google Scholar 

  84. de la Torre C, Domínguez-Berrocal L, Murguía JR, Marcos MD, Martínez-Máñez R, Bravo J, Sancenón F (2018) ϵ-Polylysine-capped mesoporous silica nanoparticles as carrier of the C9h peptide to induce apoptosis in cancer cells. Chem Eur J 24(8):1890–1897. https://doi.org/10.1002/chem.201704161

    Article  CAS  PubMed  Google Scholar 

  85. Li ZZ, Xu SA, Wen LX, Liu F, Liu AQ, Wang Q, Sun HY, Yu W, Chen JF (2006) Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release. J Control Release 111(1–2):81–88. https://doi.org/10.1016/j.jconrel.2005.10.020

    Article  CAS  PubMed  Google Scholar 

  86. Stevens EV, Carpenter AW, Shin JH, Liu J, Der CJ, Schoenfisch MH (2010) Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol Pharm 7(3):775–785. https://doi.org/10.1021/mp9002865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang L, Gabrielson NP, Uckun FM, Fan TM, Cheng J (2013) Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates. Mol Pharm 10(3):883–892. https://doi.org/10.1021/mp300684a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Song Y, Du D, Li L, Xu J, Dutta P, Lin Y (2017) In vitro study of receptor-mediated silica nanoparticles delivery across blood-brain barrier. ACS Appl Mater Interfaces 9(24):20410–20416. https://doi.org/10.1021/acsami.7b03504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ku S, Yan F, Wang Y, Sun Y, Yang N, Ye L (2010) The blood-brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochem Biophys Res Commun 394(4):871–876. https://doi.org/10.1016/j.bbrc.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  90. Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692. https://doi.org/10.1021/nl049126a

    Article  CAS  Google Scholar 

  91. Liu D, Lin B, Shao W, Zhu Z, Ji T, Yang C (2014) In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. ACS Appl Mater Interfaces 6(3):2131–2136. https://doi.org/10.1021/am405219u

    Article  CAS  PubMed  Google Scholar 

  92. Gao X, Chen J, Chen J, Wu B, Chen H, Jiang X (2008) Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjug Chem 19(11):2189–2195. https://doi.org/10.1021/bc8002698

    Article  CAS  PubMed  Google Scholar 

  93. Xu G, Yong KT, Roy I, Mahajan SD, Ding H, Schwartz SA, Prasad PN (2008) Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood-brain barrier. Bioconjug Chem 19(6):1179–1185. https://doi.org/10.1021/bc700477u

    Article  CAS  PubMed  Google Scholar 

  94. Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G, Mericle RA (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun 25:3144–3146. https://doi.org/10.1039/b503234b

    Article  CAS  Google Scholar 

  95. Paris-Robidas S, Brouard D, Emond V, Parent M, Calon F (2016) Internalization of targeted quantum dots by brain capillary endothelial cells in vivo. J Cerebr Blood Flow Metab 36(4):731–742. https://doi.org/10.1177/0271678X15608201

    Article  CAS  Google Scholar 

  96. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1):86–91. https://doi.org/10.1016/j.bbrc.2006.01.129

    Article  CAS  PubMed  Google Scholar 

  97. Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, Ludington JS, Chatani P, Mosenthal WP, Leiter JC, Andreescu S, Erlichman JS (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51(6):1155–1163. https://doi.org/10.1016/j.freeradbiomed.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  98. Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19:14. https://doi.org/10.1186/1423-0127-19-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Naziroglu M, Muhamad S, Pecze L (2017) Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: focus on selenium nanoparticles. Expert Rev Clin Pharmacol 10(7):773–782. https://doi.org/10.1080/17512433.2017.1324781

    Article  CAS  PubMed  Google Scholar 

  100. Ishrat T, Parveen K, Khan MM, Khuwaja G, Khan MB, Yousuf S, Ahmad A, Shrivastav P, Islam F (2009) Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 1281:117–127. https://doi.org/10.1016/j.brainres.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  101. Yin T, Yang L, Liu Y, Zhou X, Sun J, Liu J (2015) Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater 25:172–183. https://doi.org/10.1016/j.actbio.2015.06.035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Fondap 15130011 and Fondecyt 1170929.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo Gallardo-Toledo or Marcelo Javier Kogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gallardo-Toledo, E., Velasco-Aguirre, C., Kogan, M.J. (2021). Inorganic Nanoparticles and Their Strategies to Enhance Brain Drug Delivery. In: Morales, J.O., Gaillard, P.J. (eds) Nanomedicines for Brain Drug Delivery. Neuromethods, vol 157. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0838-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0838-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0837-1

  • Online ISBN: 978-1-0716-0838-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics