Skip to main content

Molecular Dynamics Simulations of Channelrhodopsin Chimera, C1C2

  • Protocol
  • First Online:
Channelrhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2191))

Abstract

Molecular dynamics (MD) simulations have been successfully used for modeling dynamic behavior of biologically relevant systems, such as ion channels in representative environments to decode protein structure-function relationships. Protocol presented here describes steps for generating input files and modeling a monomer of transmembrane cation channel, channelrhodopsin chimera (C1C2), in representative environment of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) planar lipid bilayer, TIP3P water and ions (Na+ and Cl) using molecular dynamics package NAMD, molecular graphics/analysis tool VMD, and other relevant tools. MD simulations of C1C2 were performed at 303.15 K and in constant particle number, isothermal-isobaric (NpT) ensemble. The results of modeling have helped understand how key interactions in the center of the C1C2 channel contribute to channel gating and subsequent solvent transport across the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945. https://doi.org/10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boyden E, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  Google Scholar 

  3. Bruegmann T, Malan D, Hesse M et al (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900

    Article  CAS  Google Scholar 

  4. Kato HE, Zhang F, Yizhar O et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374. https://doi.org/10.1038/nature10870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ardevol A, Hummer G (2018) Retinal isomerization and water-pore formation in channelrhodopsin-2. Proc Natl Acad Sci 115:3557–3562

    Article  CAS  Google Scholar 

  6. Kuhne J, Eisenhauer K, Ritter E et al (2015) Early formation of the ion-conducting pore in channelrhodopsin-2. Angew Chem Int Ed 54:4953–4957. https://doi.org/10.1002/anie.201410180

    Article  CAS  Google Scholar 

  7. Müller M, Bamann C, Bamberg E, Kühlbrandt W (2015) Light-induced helix movements in channelrhodopsin-2. J Mol Biol 427:341–349. https://doi.org/10.1016/j.jmb.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  8. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Molec Graphics 14:33–38

    Article  CAS  Google Scholar 

  10. Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625

    Article  CAS  Google Scholar 

  12. Yang J, Yan R, Roy A et al (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  16. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58. https://doi.org/10.1016/j.bpj.2009.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537. https://doi.org/10.1021/ct100578z

    Article  CAS  PubMed  Google Scholar 

  18. Jamroz M, Kolinski A (2010) Modeling of loops in proteins: a multi-method approach. BMC Struct Biol 10:5

    Article  Google Scholar 

  19. van Beusekom B, Joosten K, Hekkelman ML et al (2018) Homology-based loop modeling yields more complete crystallographic protein structures. Int Union Crystallogr 5:585–594

    Article  Google Scholar 

  20. Wallner B, Elofsson A (2005) All are not equal: a benchmark of different homology modeling programs. Protein Sci 15:1315–1327

    Article  Google Scholar 

  21. Muhammed MT, Aki-Yalcin E (2019) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93:12–20

    Article  CAS  Google Scholar 

  22. Tajkhorshid E, Paizs B, Suhai S (1997) Conformational effects on the proton affinity of the Schiff base in bacteriorhodopsin: a density functional study. J Phys Chem B 101:8021–8028. https://doi.org/10.1021/jp971283t

    Article  CAS  Google Scholar 

  23. Tajkhorshid E, Suhai S (1999) Influence of the methyl groups on the structure, charge distribution, and proton affinity of the retinal Schiff base. J Phys Chem B 103:5581–5590. https://doi.org/10.1021/jp983742b

    Article  CAS  Google Scholar 

  24. Tajkhorshid E, Baudry J, Schulten K, Suhai S (2000) Molecular dynamics study of the nature and origin of Retinal’s twisted structure in bacteriorhodopsin. Biophys J 78:683–693. https://doi.org/10.1016/S0006-3495(00)76626-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nina M, Roux B, Smith JC (1995) Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. Biophys J 68:25–39. https://doi.org/10.1016/S0006-3495(95)80184-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baudry J, Crouzy S, Roux B, Smith JC (1997) Quantum chemical and free energy simulation analysis of retinal conformational energetics. J Chem Inf Comput Sci 37:1018–1024. https://doi.org/10.1021/ci9702398

    Article  CAS  Google Scholar 

  27. VanGordon M, Gyawali G, Rick SW, Rempe SB (2017) Atomistic study of intramolecular interactions in the closed-state channelrhodopsin chimera, C1C2. Biophys J 112:943–952

    Article  CAS  Google Scholar 

  28. Likhachev IV, Balabaev NK, Galzitskaya OV (2016) Available instruments for analyzing molecular dynamics trajectories. Open Biochem J 10:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

VanGordon, M.R. (2021). Molecular Dynamics Simulations of Channelrhodopsin Chimera, C1C2. In: Dempski, R. (eds) Channelrhodopsin. Methods in Molecular Biology, vol 2191. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0830-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0830-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0829-6

  • Online ISBN: 978-1-0716-0830-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics