Skip to main content

A Selective Activity-Based Approach for Analysis of Enzymes with an OmpG Nanopore

  • Protocol
  • First Online:
Nanopore Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2186))

Abstract

Many enzymatic activity assays are based on either (1) identifying and quantifying the enzyme with methods such as western blot or enzyme-linked substrate assay (ELISA) or (2) quantifying the enzymatic reaction by monitoring the changing levels of either product or substrate. We have generated an outer membrane protein G (OmpG)-based nanopore approach to distinguish enzyme identity as well as analyze the enzyme’s catalytic activity. Here, we engineered an OmpG nanopore with a peptide cut site inserted into one of its loops to detect proteolytic behavior. In addition, we generated an OmpG nanopore with a single-stranded DNA attached to a loop for analyzing nucleolytic cleavage. This OmpG nanopore approach may be highly useful in analyzing specific enzymes in complex biological samples, or in directly determining kinetics of enzyme-substrate complex association and dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ravanan P, Srikumar IF, Talwar P (2017) Autophagy: the spotlight for cellular stress responses. Life Sci 188:53–67

    Article  CAS  Google Scholar 

  2. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    Article  Google Scholar 

  3. Xie H, Braha O, Gu LQ, Cheley S, Bayley H (2005) Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Chem Biol 12:109–120

    Article  CAS  Google Scholar 

  4. Cheley S, Xie H, Bayley H (2006) A genetically encoded pore for the stochastic detection of a protein kinase. Chembiochem 7:1923–1927

    Article  CAS  Google Scholar 

  5. Rotem D, Jayasinghe L, Salichou M, Bayley H (2012) Protein detection by nanopores equipped with aptamers. J Am Chem Soc 134:2781–2787

    Article  CAS  Google Scholar 

  6. Harrington L, Cheley S, Alexander LT, Knapp S, Bayley H (2013) Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. Proc Natl Acad Sci U S A 110:E4417–E4426

    Article  CAS  Google Scholar 

  7. Van Meervelt V, Soskine M, Maglia G (2014) Detection of two isomeric binding configurations in a protein aptamer complex with a biological nanopore. ACS Nano 8:12826–12835

    Article  Google Scholar 

  8. Zhao Q, De Zoysa RSS, Wang D, Jayawardhana DA, Guan X (2009) Real-time monitoring of peptide cleavage using a nanopore probe. J Am Chem Soc 131:6324–6325

    Article  CAS  Google Scholar 

  9. Mohammad MM, Iyer R, Howard KR, McPike MP, Borer PN, Movileanu L (2012) Engineering a rigid protein tunnel for biomolecular detection. J Am Chem Soc 134:9521–9531

    Article  CAS  Google Scholar 

  10. Wang L, Han Y, Zhou S, Guan X (2014) Real-time label-free measurement of HIV-1 protease activity by nanopore analysis. Biosens Bioelectron 62:158–162

    Article  CAS  Google Scholar 

  11. Kukwikila M, Howorka S (2015) Nanopore-based electrical and label-free sensing of enzyme activity in blood serum. Anal Chem 87:9149–9154

    Article  CAS  Google Scholar 

  12. Nivala J, Marks DB, Akeson M (2013) Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat Biotechnol 31:247–250

    Article  CAS  Google Scholar 

  13. Nivala J, Mulroney L, Li G, Schreiber J, Akeson M (2014) Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8:12365–12375

    Article  CAS  Google Scholar 

  14. Ho C-W, Van Meervelt V, Tsai K-C, De Temmerman P-J, Mast J, Maglia G (2015) Engineering a nanopore with co-chaperonin function. Sci Adv 1:e1500905

    Article  Google Scholar 

  15. Derrington IM, Craig JM, Stava E, Laszlo AH, Ross BC, Brinkerhoff H, Nova IC, Doering K, Tickman BI, Ronaghi M, Mandell JG, Gunderson KL, Gundlach JH (2015) Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat Biotechnol 33:1073–1075

    Article  CAS  Google Scholar 

  16. Craig JM, Laszlo AH, Brinkerhoff H, Derrington IM, Noakes MT, Nova IC, Tickman BI, Doering K, de Leeuw NF, Gundlach JH (2017) Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc Natl Acad Sci 114:11932–11937

    Article  CAS  Google Scholar 

  17. Soskine M, Biesemans A, Moeyaert B, Cheley S, Bayley H, Maglia G (2012) An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett 12:4895–4900

    Article  CAS  Google Scholar 

  18. OKazaki T (2017) Days weaving the lagging strand synthesis of DNA—a personal recollection of the discovery of Okazaki fragments and studies on discontinuous replication mechanism. Proc Jpn Acad Ser B Phys Biol Sci 93:322–338

    Article  CAS  Google Scholar 

  19. Wood RD (1996) DNA repair in Eukaryotes. Annu Rev Biochem 65:135–167

    Article  CAS  Google Scholar 

  20. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  Google Scholar 

  21. Garten W, Braden C, Arendt A, Peitsch C, Baron J, Lu Y, Pawletko K, Hardes K, Steinmetzer T, Böttcher-Friebertshäuser E (2015) Influenza virus activating host proteases: Identification, localization and inhibitors as potential therapeutics. Eur J Cell Biol 94:375–383

    Article  CAS  Google Scholar 

  22. Fahie M, Chisholm C, Chen M (2015) Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore. ACS Nano 9:1089–1098

    Article  CAS  Google Scholar 

  23. Pham B, Eron SJ, Hill ME, Li X, Fahie MA, Hardy JA, Chen M (2019) A nanopore approach for analysis of caspase-7 activity in cell lysates. Biophys J 117:844–855

    Article  CAS  Google Scholar 

  24. Chen M, Li Q-H, Bayley H (2008) Orientation of the monomeric porin OmpG in planar lipid bilayers. Chembiochem 9:3029–3036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monifa A. V. Fahie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fahie, M.A.V., Pham, B., Li, F., Chen, M. (2021). A Selective Activity-Based Approach for Analysis of Enzymes with an OmpG Nanopore. In: Fahie, M.A. (eds) Nanopore Technology. Methods in Molecular Biology, vol 2186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0806-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0806-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0805-0

  • Online ISBN: 978-1-0716-0806-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics