Skip to main content

Mathematical Modeling and Optimization of Cryopreservation in Single Cells

  • Protocol
  • First Online:
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2180))

Abstract

Cryobiology is a multiscale and interdisciplinary field. The scope and scale of interactions limit the gains that can be made by one theory or experiment alone. Because of this, modeling has played a critical role in both explaining cryobiological phenomena and predicting improved protocols. Modeling facilitates understanding of the biophysical and some of the biochemical mechanisms of damage during all phases of cryopreservation including CPA equilibration and cooling and warming. Moreover, as a tool for optimization of cryopreservation protocols, modeling has yielded many successes. Modern cryobiological modeling includes very detailed descriptions of the physical phenomena that occur during freezing, including ice growth kinetics and spatial gradients that define heat and mass transport models. Here we reduce the complexity and approach only a small but classic subset of these problems. Namely, here we describe the process of building and using a mathematical model of a cell in suspension where spatial homogeneity is assumed for all quantities. We define the models that describe the critical cell quantities used to describe optimal and suboptimal protocols and then give an overview of classical methods of how to determine optimal protocols using these models. We include practical considerations of modeling in cryobiology, including fitting transport models to cell volume data, performing optimization with cell volume constraints, and a look at expanding cost functions to cooling regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mazur P, Leibo S, Chu E (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71:345–355

    Article  CAS  PubMed  Google Scholar 

  3. Woelders H, Chaveiro A (2004) Theoretical prediction of ‘optimal’ freezing programmes. Cryobiology 49:258–271

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Woods EJ, Agca Y, Critser ES, Critser JK (2000) Cryobiology of rat embryos II: a theoretical model for the development of interrupted slow freezing procedures. Biol Reprod 63:1303–1312

    Article  CAS  PubMed  Google Scholar 

  5. Agca Y, Gilmore J, Byers M, Woods EJ, Liu J, Critser JK (2002) Osmotic characteristics of mouse spermatozoa in the presence of extenders and sugars. Biol Reprod 67:1493–1501

    Article  CAS  PubMed  Google Scholar 

  6. Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179:79–102. https://doi.org/10.1007/s002320010040

    Article  CAS  PubMed  Google Scholar 

  7. Gilmore JA, Liu J, Gao DY, Critser JK (1997) Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum Reprod 12:112–118

    Article  CAS  PubMed  Google Scholar 

  8. Davidson AF, Benson JD, Higgins AZ (2014) Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes. Theor Biol Med Model 11:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Benson JD, Kearsley AJ, Higgins AZ (2012) Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology 64:144–151

    Article  CAS  PubMed  Google Scholar 

  10. Benson JD, Chicone CC, Critser JK (2012) Analytical optimal controls for the state constrained addition and removal of cryoprotective agents. Bull Math Biol 74:1516–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levin RL (1982) A generalized method for the minimization of cellular osmotic stresses and strains during the introduction and removal of permeable cryoprotectants. J Biomech Eng 104:81–86

    Article  CAS  PubMed  Google Scholar 

  12. Songsasen N, Leibo SP (1997) Cryopreservation of mouse spermatozoa. II. Relationship between survival after cryopreservation and osmotic tolerance of spermatozoa from three strains of mice. Cryobiology 35:255–269

    CAS  PubMed  Google Scholar 

  13. Mullen SF, Li M, Li Y, Chen ZJ, Critser JK (2008) Human oocyte vitrification: the permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification. Fertil Steril 89:1812–1825

    Article  PubMed  Google Scholar 

  14. Karlsson JO, Szurek EA, Higgins AZ, Lee SR, Eroglu A (2014) Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology 68:18–28. http://dx.doi.org/10.1016/j.cryobiol.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  15. Seki S, Jin B, Mazur P (2014) Extreme rapid warming yields high functional survivals of vitrified 8-cell mouse embryos even when suspended in a half-strength vitrification solution and cooled at moderate rates to -196 oC. Cryobiology 68:71–78

    Article  PubMed  Google Scholar 

  16. Anderson DM, Benson JD, Kearsley AJ (2014) Foundations of modeling in cryobiology—I: concentration, Gibbs energy, and chemical potential relationships. Cryobiology 69:349–360

    Article  CAS  PubMed  Google Scholar 

  17. Anderson DM, Benson JD, Kearsley AJ (2019) Foundations of modeling in cryobiology—II: heat and mass transport in bulk and at cell membrane and ice-liquid interfaces. Cryobiology. 91:3–17 https://doi.org/10.1016/j.cryobiol.2019.09.014

  18. Anderson DM, Benson JD, Kearsley AJ (2019) Foundations of modeling in cryobiology—III: heat and mass transport in a ternary system. Cryobiology 92:34–46

    Google Scholar 

  19. Anderson DM, Benson JD, Kearsley AJ (2019) Numerical solution of inward solidification of a dilute ternary solution towards a semi-permeable spherical cell. Math Biosci 316:108240

    Article  CAS  PubMed  Google Scholar 

  20. Karlsson JOM, Cravalho EG, Rinkes IHMB, Tompkins RG, Yarmush ML, Toner M (1993) Nucleation and growth of ice crystals inside cultured-hepatocytes during freezing in the presence of dimethyl-sulfoxide. Biophys J 65:2524–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang G, Zhang A, Xu LX, He X (2009) Modeling the cell-type dependence of diffusion-limited intracellular ice nucleation and growth during both vitrification and slow freezing. J Appl Phys 105:114701

    Article  CAS  Google Scholar 

  22. Chang A, Dantzig JA, Darr BT, Hubel A (2007) Modeling the interaction of biological cells with a solidifying interface. J Comput Phys 226:1808–1829

    Article  CAS  Google Scholar 

  23. Liu Z, Wan R, Muldrew K, Sawchuk S, Rewcastle J (2004) A level set variational formulation for coupled phase change/mass transfer problems: application to freezing of biological systems. Finite Elem Anal Des 40:1641–1663

    Article  Google Scholar 

  24. Zeng C, He L, Peng W, Ding L, Tang K, Fang D, Zhang Y (2014) Selection of optimal reference genes for quantitative RT-PCR studies of boar spermatozoa cryopreservation. Cryobiology 68:113–121. http://dx.doi.org/10.1016/j.cryobiol.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  25. Kashuba Benson CM, Benson JD, Critser JK (2008) An improved cryopreservation method for a mouse embryonic stem cell line. Cryobiology 56:120–130

    Article  CAS  PubMed  Google Scholar 

  26. Kashuba CM, Benson JD, Critser JK (2014) Rationally optimized cryopreservation of multiple mouse embryonic stem cell lines: II—Mathematical prediction and experimental validation of optimal cryopreservation protocols. Cryobiology 68:176–184. http://dx.doi.org/10.1016/j.cryobiol.2013.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kashuba CM, Benson JD, Critser JK (2014) Rationally optimized cryopreservation of multiple mouse embryonic stem cell lines: I—comparative fundamental cryobiology of multiple mouse embryonic stem cell lines and the implications for embryonic stem cell cryopreservation protocols. Cryobiology 68:166–175. http://dx.doi.org/10.1016/j.cryobiol.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  28. Agca Y, Liu J, Critser E, Critser J (2000) Fundamental cryobiology of rat immature and mature oocytes: hydraulic conductivity in the presence of Me(2)SO, Me(2)SO permeability, and their activation energies. J Exp Zool 286:523–533

    Article  CAS  PubMed  Google Scholar 

  29. Ridgway D, Broderick G, Lopez-Campistrous A, Ru’aini M, Winter P, Hamilton M, Boulanger P, Kovalenko A, Ellison MJ (2008) Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J 94:3748–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lacelle PL, Rothstein A (1966) The passive permeability of the red blood cell to cations. J Gen Physiol 50:171–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Agca Y, Liu J, Mullen S, Johnson-Ward J, Gould K, Chan A, Critser J (2005) Chimpanzee (Pan troglodytes) spermatozoa osmotic tolerance and cryoprotectant permeability characteristics. J Androl 26:470–477

    Article  PubMed  Google Scholar 

  32. Newton H, Pegg DE, Barrass R, Gosden RG (1999) Osmotically inactive volume, hydraulic conductivity, and permeability to dimethyl sulphoxide of human mature oocytes. J Reprod Fertil 117:27–33

    Article  CAS  PubMed  Google Scholar 

  33. Gao DY, Chang Q, Liu C, Farris K, Harvey K, McGann LE, English D, Jansen J, Critser JK (1998) Fundamental cryobiology of human hematopoietic progenitor cells I: osmotic characteristics and volume distribution. Cryobiology 36:40–48. https://doi.org/10.1006/cryo.1997.2060

    Article  CAS  PubMed  Google Scholar 

  34. Woods EJ, Zieger MA, Lakey JR, Liu J, Critser JK (1997) Osmotic characteristics of isolated human and canine pancreatic islets. Cryobiology 35:106–113. https://doi.org/10.1006/cryo.1997.2029

    Article  CAS  PubMed  Google Scholar 

  35. Willoughby CE, Mazur P, Peter AT, Critser JK (1996) Osmotic tolerance limits and properties of murine spermatozoa. Biol Reprod 55:715–727

    Article  CAS  PubMed  Google Scholar 

  36. Du J, Tao J, Kleinhans FW, Peter AT, Critser JK (1994) Determination of boar spermatozoa water volume and osmotic response. Theriogenology 42:1183–1191

    Article  CAS  PubMed  Google Scholar 

  37. Du J, Tao J, Kleinhans FW, Mazur P, Critser JK (1994) Water volume and osmotic behaviour of mouse spermatozoa determined by electron paramagnetic resonance. J Reprod Fertil 101:37–42

    Article  CAS  PubMed  Google Scholar 

  38. Benson C, Liu C, Gao D, Critser E, Critser J (1993) Determination of the osmotic characteristics of hamster pancreatic islets and isolated pancreatic islet cells. Cell Transplant 2:461–465

    Article  CAS  PubMed  Google Scholar 

  39. Mazur P, Schneider U (1986) Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophys 8:259–285

    Article  CAS  PubMed  Google Scholar 

  40. Shapiro H (1948) The change in osmotically inactive fraction produced by cell activation. J Gen Physiol 32:34–51

    Article  Google Scholar 

  41. Prickett RC, Elliott JAW, Hakda S, McGann LE (2008) A non-ideal replacement for the Boyle van’t Hoff equation. Cryobiology 57:130–136

    Article  CAS  PubMed  Google Scholar 

  42. Ponder E (1940) The red cell as an osmometer. In: Cold Spring Harbor Symposia on Quantitative Biology, vol 8. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 133–143

    Google Scholar 

  43. Katkov II (2011) On proper linearization, construction and analysis of the Boyle–van’t Hoff plots and correct calculation of the osmotically inactive volume. Cryobiology 62:232–241

    Article  PubMed  Google Scholar 

  44. Katkov II (2008) Challenge from the simple: some caveats in linearization of the Boyle-van’t Hoff and Arrhenius plots. Cryobiology 57:142–149

    Article  CAS  PubMed  Google Scholar 

  45. Benson JD (2012) Some comments on recent discussion of the Boyle van’t Hoff relationship. Cryobiology 64:118–120

    Article  PubMed  Google Scholar 

  46. Casula E, Traversari G, Fadda S, Klymenko OV, Kontoravdi C, Cincotti A (2019) Modelling the osmotic behaviour of human mesenchymal stem cells. Biochem Eng J 151:107296

    Article  CAS  Google Scholar 

  47. Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, Forgacs G (2007) The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J Cell Sci. https://doi.org/10.1242/jcs.001370

  48. Benson JD, Chicone CC, Critser JK (2011) A general model for the dynamics of cell volume, global stability and optimal control. J Math Biol 63:339–359

    Article  PubMed  Google Scholar 

  49. Moore WJ (1972) Physical chemistry, 4th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  50. Prickett RC, Elliott JAW, McGann LE (2011) Application of the multisolute osmotic virial equation to solutions containing electrolytes. J Phys Chem B 115:14531–14543

    Article  CAS  PubMed  Google Scholar 

  51. Benson JD, Bagchi A, Han X, Critser JK, Woods EJ (2010) Melting point equations for the ternary system water/sodium chloride/ethylene glycol revisited. Cryobiology 61:352–356

    Article  CAS  PubMed  Google Scholar 

  52. Elliott JAW, Prickett RC, Elmoazzen HY, Porter KR, McGann LE (2007) A multisolute osmotic virial equation for solutions of interest in biology. J Phys Chem B 111:1775–1785

    Article  CAS  PubMed  Google Scholar 

  53. Landau LD, Lifshitz EM (1980) Statistical physics, vol 5. Course of theoretical physics, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  54. Kleinhans FW, Mazur P (2007) Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest. Cryobiology 54:212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Benson JD (2011) Stability analysis of several non-dilute multiple solute transport equations. J Math Chem 49:859–869

    Article  CAS  Google Scholar 

  56. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  57. Elliott JAW, Elmoazzen HY, McGann LE (2000) A method whereby Onsager coefficients may be evaluated. J Chem Phys 113:6573–6578

    Article  CAS  Google Scholar 

  58. Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  CAS  PubMed  Google Scholar 

  59. Kleinhans FW (1998) Membrane permeability modeling: Kedem-Katchalsky vs. a two-parameter formalism. Cryobiology 37:271–289

    Article  CAS  PubMed  Google Scholar 

  60. Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes: theory and reality. Wiley, New York

    Google Scholar 

  61. Ebertz S, McGann L (2002) Osmotic parameters of cells from a bioengineered human corneal equivalent and consequences for cryopreservation. Cryobiology 45:109–117

    Article  CAS  PubMed  Google Scholar 

  62. Mazur P, Koshimoto C (2002) Is intracellular ice formation the cause of death of mouse sperm frozen at high cooling rates? Biol Reprod 66:1485–1490

    Article  CAS  PubMed  Google Scholar 

  63. Fedorow C, McGann L, Korbutt G, Rayat G, Rajotte R, Lakey J (2001) Osmotic and cryoprotectant permeation characteristics of islet cells isolated from the newborn pig pancreas. Cell Transplant 10:651–659

    Article  CAS  PubMed  Google Scholar 

  64. Benson CT, Liu C, Gao DY, Critser ES, Benson J, Critser J (1998) Hydraulic conductivity (Lp) and its activation energy (Ea), cryoprotectant agent permeability (Ps) and its Ea, and reflection coefficients (sigma) for golden hamster individual pancreatic islet cell membranes. Cryobiology 37:290–299. https://doi.org/10.1006/cryo.1998.2124

    Article  CAS  PubMed  Google Scholar 

  65. Liu J, Zieger MAJ, Lakey JRT, Woods EJ, Critser JK (1997) The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation. Cryobiology 35:1–13

    Article  CAS  PubMed  Google Scholar 

  66. Benson CT, Liu C, Gao DY, Critser ES, Benson JD, Critser JK (1996) Hydraulic conductivity (Lp) and its activation energy (Ea), cryoprotectant agent permeability (Ps) and its Ea, and reflection coefficients (ς) for golden hamster individual pancreatic islet cell membranes. Cryobiology 37(4):290–299

    Google Scholar 

  67. Liu C, Benson CT, Gao DY, Haag BW, Mcgann LE, Critser JK (1995) Water permeability and its activation-energy for individual hamster pancreatic islet cells. Cryobiology 32:493–502. https://doi.org/10.1006/cryo.1995.1049

    Article  CAS  PubMed  Google Scholar 

  68. Rule GS, Law P, Kruuv J, Lepock JR (1980) Water permeability of mammalian cells as a function of temperature in the presence of dimethylsulfoxide: correlation with the state of the membrane lipids. J Cell Physiol 103:407–416

    Article  CAS  PubMed  Google Scholar 

  69. Devireddy RV, Fahrig B, Godke RA, Leibo SP (2004) Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates. Mol Reprod Dev 67:446–457

    Article  CAS  PubMed  Google Scholar 

  70. Devireddy RV, Smith DJ, Bischof JC (1999) Mass transfer during freezing in rat prostate tumor tissue. AIChE J 43(3):639–654

    Google Scholar 

  71. Devireddy RV, Raha D, Bischof JC (1998) Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter. Cryobiology 36:124–155

    Article  CAS  PubMed  Google Scholar 

  72. Drobnis E, Crowe L, Berger T, Anchordoguy T, Overstreet J, Crowe J (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437

    Article  CAS  PubMed  Google Scholar 

  73. Mcnaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology (the “Gold Book”), 2nd edn. Wiley Blackwell, Oxford. ISBN 978-0865426849

    Google Scholar 

  74. Katkov I (2000) A two-parameter model of cell membrane permeability for multisolute systems. Cryobiology 40:64–83

    Article  CAS  PubMed  Google Scholar 

  75. Lusianti RE, Benson JD, Acker JP, Higgins AZ (2013) Rapid removal of glycerol from frozen-thawed red blood cells. Biotechnol Prog 69:609–620

    Article  CAS  Google Scholar 

  76. Kreyszig E (2006) Advanced engineering mathematics, 9th edn. Wiley, New York

    Google Scholar 

  77. Benson JD, Chicone CC, Critser JK (2005) Exact solutions of a two parameter flux model and cryobiological applications. Cryobiology 50:308–316

    Article  CAS  PubMed  Google Scholar 

  78. Boyce W, DiPrima R (1992) Elementary differential equations and boundary value problems, 6th edn. Wiley, New York

    Google Scholar 

  79. Benson JD, Higgins AZ, Desai K, Eroglu A (2018) A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80:144–155

    Article  PubMed  Google Scholar 

  80. Katkov I (2002) The point of maximum cell water volume excursion in case of presence of an impermeable solute. Cryobiology 44:193–203

    Article  CAS  PubMed  Google Scholar 

  81. Zhang S, Chen G (2002) Analytical solution for the extremums of cell water volume and cell volume using a two-parameter model. Cryobiology 44:204–209

    Article  CAS  PubMed  Google Scholar 

  82. Elmoazzen HY, Elliott JAW, McGann LE (2009) Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation. Biophys J 96:2559–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Prickett RC, Elliott JAW, McGann LE (2010) Application of the osmotic virial equation in cryobiology. Cryobiology 60:30–42

    Article  CAS  PubMed  Google Scholar 

  84. Benson J, Haidekker M, Benson C, Critser J (2005) Mercury free operation of the Coulter counter MultiSizer II sampling stand. Cryobiology 51:344–347

    Article  CAS  PubMed  Google Scholar 

  85. Higgins A, Karlsson J (2008) Curve fitting approach for measurement of cellular osmotic properties by the electrical sensing zone method. I. osmotically inactive volume. Cryobiology 57:223–233

    CAS  PubMed  Google Scholar 

  86. Gao DY, Benson CT, Liu C, McGrath JJ, Critser ES, Critser JK (1996) Development of a novel microperfusion chamber for determination of cell membrane transport properties. Biophys J 71:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mullen SF, Rosenbaum M, Critser JK (2007) The effect of osmotic stress on the cell volume, metaphase ii spindle and developmental potential of in vitro matured porcine oocytes. Cryobiology 54:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao G, Zhang Z, Zhang Y, Chen Z, Niu D, Cao Y, He X (2017) A microfluidic perfusion approach for on-chip characterization of the transport properties of human oocytes. Lab Chip 17:1297–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mbogba MK, Haider Z, Hossain SM, Huang D, Memon K, Panhwar F, Lei Z, Zhao G (2018) The application of convolution neural network based cell segmentation during cryopreservation. Cryobiology 85:95–104. https://doi.org/10.1016/j.cryobiol.2018.09.003

    Article  PubMed  Google Scholar 

  90. Chaveiro A, Liu J, Engel B, Critser JK, Woelders H (2006) Significant variability among bulls in the sperm membrane permeability for water and glycerol: possible implications for semen freezing protocols for individual males. Cryobiology 53:349–359

    Article  CAS  PubMed  Google Scholar 

  91. Fry AK, Higgins AZ (2012) Measurement of cryoprotectant permeability in adherent endothelial cells and applications to cryopreservation. Cell Mol Bioeng 5:287–298

    Article  Google Scholar 

  92. Zhurova M, Olivieri A, Holt A, Acker JP (2014) A method to measure permeability of red blood cell membrane to water and solutes using intrinsic fluorescence. Clin Chim Acta Int J Clin Chem 431C:103–110. https://doi.org/10.1016/j.cca.2014.01.045

    Article  CAS  Google Scholar 

  93. Toner M, Cravalho EG, Karel M (1993) Cellular-response of mouse oocytes to freezing stress - prediction of intracellular ice formation. J Biomech Eng Trans ASME 115:169–174

    Article  CAS  Google Scholar 

  94. Karlsson JOM, Cravalho EG, Toner M (1994) A model of diffusion–limited ice growth inside biological cells during freezing. J Appl Phy 75:4442–4455

    Article  Google Scholar 

  95. Karlsson JOM (2010) Effects of solution composition on the theoretical prediction of ice nucleation kinetics and thermodynamics. Cryobiology 60:43–51

    Article  CAS  PubMed  Google Scholar 

  96. Glazar AI, Mullen SF, Liu J, Benson JD, Critser JK, Squires EL, Graham JK (2009) Osmotic tolerance limits and membrane permeability characteristics of stallion spermatozoa treated with cholesterol. Cryobiology 59:201–206

    Article  CAS  PubMed  Google Scholar 

  97. Yoshimori T, Takamatsu H (2009) 3-D measurement of osmotic dehydration of isolated and adhered PC-3 cells. Cryobiology 58:52–61. http://dx.doi.org/10.1016/j.cryobiol.2008.10.128

    Article  CAS  PubMed  Google Scholar 

  98. Blanco JM, Long JA, Gee G, Donoghue AM, Wildt DE (2008) Osmotic tolerance of avian spermatozoa: influence of time, temperature, cryoprotectant and membrane ion pump function on sperm viability. Cryobiology 56:8–14

    Article  CAS  PubMed  Google Scholar 

  99. Salinas-Flores L, Adams SL, Lim MH (2008) Determination of the membrane permeability characteristics of pacific oyster, crassostrea gigas, oocytes and development of optimized methods to add and remove ethylene glycol. Cryobiology 56:43–52

    Article  CAS  PubMed  Google Scholar 

  100. Si W, Benson J, Men H, Critser J (2006) Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm. Cryobiology 53:336–348

    Article  CAS  PubMed  Google Scholar 

  101. Agca Y, Mullen S, Liu J, Johnson-Ward J, Gould K, Chan A, Critser J (2005) Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa. Cryobiology 50:1–14

    Article  CAS  Google Scholar 

  102. Walters EM, Men H, Agca Y, Mullen SF, Critser ES, Critser JK (2005) Osmotic tolerance of mouse spermatozoa from various genetic backgrounds: acrosome integrity, membrane integrity, and maintenance of motility. Cryobiology 50:193–205

    Article  CAS  PubMed  Google Scholar 

  103. Hunt C, Armitage S, Pegg D (2003) Cryopreservation of umbilical cord blood: 2. Tolerance of CD34(+) cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology 46:76–87

    Article  CAS  PubMed  Google Scholar 

  104. Guthrie H, Liu J, Critser J (2002) Osmotic tolerance limits and effects of cryoprotectants on motility of bovine spermatozoa. Biol Reprod 67. https://doi.org/10.1095/biolreprod67.6.1811

  105. Koshimoto C, Mazur P (2002) The effect of the osmolality of sugar-containing media, the type of sugar, and the mass and molar concentration of sugar on the survival of frozen-thawed mouse sperm. Cryobiology 45:80–90

    Article  CAS  PubMed  Google Scholar 

  106. Liu J, Christian J, Critser J (2002) Canine RBC osmotic tolerance and membrane permeability. Cryobiology 44:258–268

    Article  CAS  PubMed  Google Scholar 

  107. Koshimoto C, Gamliel E, Mazur P (2000) Effect of osmolality and oxygen tension on the survival of mouse sperm frozen to various temperatures in various concentrations of glycerol and raffinose. Cryobiology 41:204–231

    Article  CAS  PubMed  Google Scholar 

  108. Gao DY, Liu J, Liu C, McGann LE, Watson PF, Kleinhans FW, Mazur P, Critser ES, Critser JK (1995) Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod 10:1109–1122

    Article  CAS  PubMed  Google Scholar 

  109. Gao DY, Ashworth E, Watson PF, Kleinhans FW, Mazur P, Critser JK (1993) Hyperosmotic tolerance of human spermatozoa: separate effects of glycerol, sodium chloride, and sucrose on spermolysis. Biol Reprod 49:112–123

    Article  CAS  PubMed  Google Scholar 

  110. Fahy G, Wowk B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35

    Article  CAS  PubMed  Google Scholar 

  111. Elmoazzen HY, Poovadan A, Law GK, Elliott JAW, McGann LE, Jomha NM (2007) Dimethyl sulfoxide toxicity kinetics in intact articular cartilage. Cell Tissue Bank 8:125–133

    Article  CAS  PubMed  Google Scholar 

  112. Wang L, Liu J, Zhou GB, Hou YP, Li JJ, Zhu SE (2011) Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures. Biol Reprod 85:884–894

    Article  CAS  PubMed  Google Scholar 

  113. Benson JD (2009) Mathematical problems from cryobiology. Ph.D. thesis, University of Missouri

    Google Scholar 

  114. Karlsson JO, Younis AI, Chan AW, Gould KG, Eroglu A (2009) Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev 76:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee E, Markus L (1968) Foundations of optimal control theory. The SIAM series in applied mathematics. Wiley, New York.

    Google Scholar 

  116. Royden HL (1988) Real analysis, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  117. Sch attler H, Ledzewicz U (2012) Geometric optimal control: theory, methods and examples. Springer, Berlin

    Google Scholar 

  118. Benson JD (2013) Cost functional dependence of optimal CPA equilibration trajectories. Cryobiology 67:404

    Article  Google Scholar 

  119. Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272

    Article  CAS  PubMed  Google Scholar 

  120. Muldrew K, Acker JP, Elliott JA, McGann LE (2004) The water to ice transition: implications for living cells. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, London, pp 93–134

    Google Scholar 

  121. Mazur P, Miller R (1976) Permeability of the human erythrocyte to glycerol in 1 and 2 M solutions at 0 or 20 C. Cryobiology 13:507–522

    Article  CAS  PubMed  Google Scholar 

  122. Morris G, Acton E, Avery S (1999) A novel approach to sperm cryopreservation. Hum Reprod 14:1013–1021

    Article  CAS  PubMed  Google Scholar 

  123. Karlsson JOM, Eroglu A, Toth TL, Cravalho EG, Toner M (1996) Fertilization and development of mouse oocytes cryopreserved using a theoretically optimized protocol. Hum Reprod 11:1296–1305

    Article  CAS  PubMed  Google Scholar 

  124. Wowk B (2010) Thermodynamic aspects of vitrification. Cryobiology 60:11–22

    Article  CAS  PubMed  Google Scholar 

  125. Seki S, Mazur P (2009) The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 59:75–82

    Article  PubMed  PubMed Central  Google Scholar 

  126. Barry PH, Diamond JM (1984) Effects of unstirred layers on membrane phenomena. Physiol Rev 64:763–872

    Article  CAS  PubMed  Google Scholar 

  127. Prickett RC (2010) The application of the multisolute osmotic virial equation to cryobiology. Ph.D. thesis, University of Alberta, Edmonton, Alberta

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Benson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Benson, J.D. (2021). Mathematical Modeling and Optimization of Cryopreservation in Single Cells. In: Wolkers, W.F., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0783-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0783-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0782-4

  • Online ISBN: 978-1-0716-0783-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics