Skip to main content

Fluoroglycoproteins by Copper-Free Strain-Promoted Azide–Alkyne Cycloaddition

  • Protocol
  • First Online:
Peptide and Protein Engineering

Abstract

This chapter describes a reliable two-step, metal-free protocol for the preparation of well-defined fluoroglycoproteins. It starts with a first alkylation step to chemoselectively install strained alkyne handles at cysteine residues followed by a second strain-promoted azide–alkyne cycloaddition using an inverse electron-demand Diels–Alder reaction. This proof-of-principle study that uses the apoptotic protein marker Annexin V enables the efficient metal-free incorporation of 2-deoxy-2-fluoro-glycopyranosyl azides into proteins and complements previous methods using Cu(I)-mediated azide–alkyne cycloadditions and thiol chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADIBO:

Azadibenzobicyclooctyne

AnxV:

Annexin V

BCN:

Bicyclo[6.1.0]nonyne

CuAAC:

Copper-mediated azide–alkyne cycloaddition

DBCO:

Dibenzocyclooctyne

DIFO:

Difluorinated cyclooctyne

DMF:

N,N-Dimethylformamide

ESI:

Electrospray ionization

FDG:

2-Deoxy-2-fluoro-β-d-glucopyranose

FDGN3:

2-Deoxy-2-fluoro-β-d-glucopyranosyl azide

HPLC:

High-performance liquid chromatography

LC:

Liquid chromatography

MS:

Mass spectrometry

MWCO:

Molecular weight cut-off

SPAAC:

Strain-promoted azide–alkyne cycloaddition

TOF:

Time of flight

UPLC:

Ultra-performance liquid chromatography

References

  1. Uhrig ML, Lantaño B, Postigo A (2019) Synthetic strategies for fluorination of carbohydrates. Org Biomol Chem 17:5173–5189

    Article  CAS  PubMed  Google Scholar 

  2. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58:8315–8359

    Article  CAS  PubMed  Google Scholar 

  3. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330

    Article  CAS  PubMed  Google Scholar 

  4. Maschauer S, Prante O (2014) Sweetening pharmaceutical radiochemistry by 18F-fluoroglycosylation: a short review. Biomed Res Int 2014:1–16

    Article  CAS  Google Scholar 

  5. Hunter L (2010) The C–F bond as a conformational tool in organic and biological chemistry. Beilstein J Org Chem 6:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ardá A, Jiménez-Barbero J (2018) The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chem Commun 54:4761–4769

    Article  Google Scholar 

  7. Arntson KE, Pomerantz WCK (2015) Protein-observed fluorine NMR: a bioorthogonal approach for small molecule discovery. J Med Chem 59:5158–5171

    Article  PubMed  CAS  Google Scholar 

  8. Li C, Wang LX (2018) Chemoenzymatic methods for the synthesis of glycoproteins. Chem Rev 118:8359–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boutureira O, Bernardes GJL (2015) Advances in chemical protein modification. Chem Rev 115:2174–2195

    Article  CAS  PubMed  Google Scholar 

  10. Krall N, da Cruz FP, Boutureira O, Bernardes GJL (2015) Site-selective protein-modification chemistry for basic biology and drug development. Nat Chem 8:103–113

    Article  PubMed  CAS  Google Scholar 

  11. Spicer CD, Davis BG (2014) Selective chemical protein modification. Nat Commun 5:4740

    Article  CAS  PubMed  Google Scholar 

  12. Boutureira O, D’Hooge F, Fernández-González M, Bernardes GJL, Sánchez-Navarro M, Koeppe JR, Davis BG (2010) Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins. Chem Commun 46:8142–8144

    Article  CAS  Google Scholar 

  13. Fernández-González M, Boutureira O, Bernardes GJL, Chalker JM, Young MA, Errey JC, Davis BG (2010) Site-selective chemoenzymatic construction of synthetic glycoproteins using endoglycosidases. Chem Sci 1:709–715

    Article  CAS  Google Scholar 

  14. Vala C, Chrétien F, Balentova E, Lamandé-Langle S, Chapleur Y (2011) Neoglycopeptides through direct functionalization of cysteine. Tetrahedron Lett 52:17–20

    Article  CAS  Google Scholar 

  15. Maschauer S, Prante O (2009) A series of 2-O-trifluoromethylsulfonyl-D-mannopyranosides as precursors for concomitant 18F-labeling and glycosylation by click chemistry. Carbohydr Res 344:753–761

    Article  CAS  PubMed  Google Scholar 

  16. Maschauer S, Einsiedel J, Haubner R, Hocke C, Ocker M, Hübner H et al (2010) Labeling and glycosylation of peptides using click chemistry: a general approach to 18F-glycopeptides as effective imaging probes for positron emission tomography. Angew Chem Int Ed 49:976–979

    Article  CAS  Google Scholar 

  17. Salvadó M, Amgarten B, Castillón S, Bernardes GJL, Boutureira O (2015) Synthesis of fluorosugar reagents for the construction of well-defined fluoroglycoproteins. Org Lett 17:2836–2839

    Article  PubMed  CAS  Google Scholar 

  18. Boutureira O, Bernardes GJL, Fernández-González M, Anthony DC, Davis BG (2012) Selenenylsulfide-linked homogeneous glycopeptides and glycoproteins: synthesis of human “hepatic Se metabolite A”. Angew Chem Int Ed 51:1432–1436

    Article  CAS  Google Scholar 

  19. Boutureira O, Bernardes GJL, D’Hooge F, Davis BG (2011) Direct radiolabelling of proteins at cysteine using [18F]-fluorosugars. Chem Commun 47:10010–10012

    Article  CAS  Google Scholar 

  20. Fröhlich RFG, Schrank E, Zangger K (2012) 2,2,2-Trifluoroethyl 6-thio-β-D-glucopyranoside as a selective tag for cysteines in proteins. Carbohydr Res 361:100–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Prante O, Einsiedel J, Haubner R, Gmeiner P, Wester H-J, Kuwert T et al (2007) 3,4,6-Tri-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranosyl phenylthiosulfonate: a thiol-reactive agent for the chemoselective 18F-glycosylation of peptides. Bioconjug Chem 18:254–262

    Article  CAS  PubMed  Google Scholar 

  22. Collet C, Maskali F, Clément A, Chrétien F, Poussier S, Karcher G et al (2015) Development of 6-[18F]fluoro-carbohydrate-based prosthetic groups and their conjugation to peptides via click chemistry. J Label Compd Radiopharm 59:54–62

    Article  CAS  Google Scholar 

  23. Fischer CR, Müller C, Reber J, Müller A, Krämer SD, Ametamey SM et al (2012) [18F]Fluoro-deoxy-glucose folate: a novel PET radiotracer with improved in vivo properties for folate receptor targeting. Bioconjug Chem 23:805–813

    Article  CAS  PubMed  Google Scholar 

  24. Wuest F, Berndt M, Bergmann R, van den Hoff J, Pietzsch J (2008) Synthesis and application of [18F]FDG-maleimidehexyloxime ([18F]FDG-MHO): a [18F]FDG-based prosthetic group for the chemoselective 18F-labeling of peptides and proteins. Bioconjug Chem 19:1202–1210

    Article  CAS  PubMed  Google Scholar 

  25. Namavari M, Cheng Z, Zhang R, De A, Levi J, Hoerner JK et al (2009) A novel method for direct site-specific radiolabeling of peptides using [18F]FDG. Bioconjug Chem 20:432–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hultsch C, Schottelius M, Auernheimer J, Alke A, Wester H-J (2009) 18F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK). Eur J Nucl Med Mol Imaging 36:1469–1474

    Article  CAS  PubMed  Google Scholar 

  27. Yang F, Zheng X-J, Huo C-X, Wang Y, Zhang Y, Ye X-S (2011) Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of STn antigen. ACS Chem Biol 6:252–259

    Article  CAS  PubMed  Google Scholar 

  28. Huo C-X, Zheng X-J, Xiao A, Liu C-C, Sun S, Lv Z et al (2015) Synthetic and immunological studies of N-acyl modified S-linked STn derivatives as anticancer vaccine candidates. Org Biomol Chem 13:3677–3690

    Article  CAS  PubMed  Google Scholar 

  29. Lee H-Y, Chen C-Y, Tsai T-I, Li S-T, Lin K-H, Cheng Y-Y et al (2014) Immunogenicity study of globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. J Am Chem Soc 136:16844–16853

    Article  CAS  PubMed  Google Scholar 

  30. Orwenyo J, Huang W, Wang L-X (2013) Chemoenzymatic synthesis and lectin recognition of a selectively fluorinated glycoprotein. Bioorg Med Chem 21:4768–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oberbillig T, Mersch C, Wagner S, Hoffmann-Röder A (2012) Antibody recognition of fluorinated MUC1 glycopeptide antigens. Chem Commun 48:1487–1489

    Article  CAS  Google Scholar 

  32. Hoffmann-Röder A, Kaiser A, Wagner S, Gaidzik N, Kowalczyk D, Westerlind U et al (2010) Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine-substituted analogue. Angew Chem Int Ed 49:8498–8503

    Article  CAS  Google Scholar 

  33. Hong V, Presolski SI, Ma C, Finn MG (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed 48:9879–9883

    Article  CAS  Google Scholar 

  34. Besanceney-Webler C, Jiang H, Zheng T, Feng L, Soriano del Amo D, Wang W et al (2011) Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew Chem Int Ed 50:8051–8056

    Article  CAS  Google Scholar 

  35. Kennedy DC, McKay CS, Legault MCB, Danielson DC, Blake JA, Pegoraro AF et al (2011) Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J Am Chem Soc 133:17993–18001

    Article  CAS  PubMed  Google Scholar 

  36. Moorman RM, Collier MB, Frohock BH, Womble MD, Chalker JM (2015) Halide inhibition of the copper-catalysed azide–alkyne cycloaddition. Org Biomol Chem 13:1974–1978

    Article  CAS  PubMed  Google Scholar 

  37. Renault K, Fredy JW, Renard PY, Sabot C (2018) Covalent modification of biomolecules through maleimide-based labeling strategies. Bioconjug Chem 29:2497–2513

    Article  CAS  PubMed  Google Scholar 

  38. Ravasco JMJM, Faustino H, Trindade A, Gois PMP (2018) Bioconjugation with maleimides: a useful tool for chemical biology. Chem Eur J 25:43–59

    Article  PubMed  CAS  Google Scholar 

  39. Pickens CJ, Johnson SN, Pressnall MM, Leon MA, Berkland CJ (2018) Practical considerations, challenges, and limitations of bioconjugation via azide–alkyne cycloaddition. Bioconjug Chem 29:686–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oliveira BL, Guo Z, Bernardes GJL (2017) Inverse electron demand Diels–Alder reactions in chemical biology. Chem Soc Rev 46:4895–4950

    Article  CAS  PubMed  Google Scholar 

  41. Liang Y, Jiang X, Tang N, Yang L, Chen H, Wang Q (2015) Quantification and visualization of glutathione S-transferase omega 1 in cells using inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence microscopy. Anal Bioanal Chem 407:2373–2381

    Article  CAS  PubMed  Google Scholar 

  42. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  43. Cal PMSD, Sieglitz F, Santos FMF, Parente Carvalho C, Guerreiro A, Bertoldo J et al (2017) Site-selective installation of BASHY fluorescent dyes to Annexin V for targeted detection of apoptotic cells. Chem Commun 53:368–371

    Article  CAS  Google Scholar 

  44. Davis DL, Price EK, Aderibigbe SO, Larkin MX-H, Barlow ED, Chen R et al (2016) Effect of buffer conditions and organic cosolvents on the rate of strain-promoted azide–alkyne cycloaddition. J Org Chem 81:6816–6819

    Article  CAS  PubMed  Google Scholar 

  45. Van Kasteren SI, Kramer HB, Gamblin DP, Davis BG (2007) Site-selective glycosylation of proteins: creating synthetic glycoproteins. Nat Protoc 2:3185–3194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Spanish Government (MCIU) (CTQ2017-90088-R to O.B.), the national agency of investigation (AEI), the European Regional Development Fund, the Royal Society (URF to G.J.L.B., URF/R/180019), FCT Portugal (iFCT to G.J.L.B., IF/00624/2015 and postdoctoral fellowship to P.M.S.D.C., SFRH/BPD/103172/2014), and the EPSRC (EP/M003647/1 to G.J.L.B.) for financial support. O.B. is a Ramón y Cajal Fellow (RYC-2015-17705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Boutureira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cal, P.M.S.D., Bernardes, G.J.L., Boutureira, O. (2020). Fluoroglycoproteins by Copper-Free Strain-Promoted Azide–Alkyne Cycloaddition. In: Iranzo, O., Roque, A. (eds) Peptide and Protein Engineering. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0720-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0720-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0719-0

  • Online ISBN: 978-1-0716-0720-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics