Skip to main content

Using an L7Ae-Tethered, Hydroxyl Radical-Mediated Footprinting Strategy to Identify and Validate Kink-Turns in RNAs

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2167))

Abstract

Kink-turns are important RNA structural modules that facilitate long-range tertiary interactions and form binding sites for members of the L7Ae family of proteins. Present in a wide variety of functional RNAs, kink-turns play key organizational roles in many RNA-based cellular processes, including translation, modification, and tRNA biogenesis. It is important to determine the contribution of kink-turns to the overall architecture of resident RNAs, as these modules dictate ribonucleoprotein (RNP) assembly and function. This chapter describes a site-directed, hydroxyl radical-mediated footprinting strategy that utilizes L7Ae-tethered chemical nucleases to experimentally validate computationally identified kink-turns in any RNA and under a wide variety of conditions. The work plan described here uses the catalytic RNase P RNA as an example to provide a blueprint for using this footprinting method to map RNA–protein interactions in other RNP complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 13 October 2020

    Owing to an oversight, the words “Reverse” and “Cleaved” in Subheading 2.3.3 of Chapter 9 were spelt incorrectly in the book.

References

  1. Huang L, Lilley DMJ (2013) The molecular recognition of kink-turn structure by the L7Ae class of proteins. RNA 19:1703–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lilley DMJ (2014) The K-turn motif in riboswitches and other RNA species. Biochim Biophys Acta 1839:995–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lilley DMJ (2012) The structure and folding of kink turns in RNA. Wiley Interdiscip Rev RNA 3:797–805

    Article  CAS  PubMed  Google Scholar 

  4. Huang L, Lilley DMJ (2016) The kink turn, a key architectural element in RNA structure. J Mol Biol 428:790–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klein DJ, Schmeing TM, Moore PB, Steitz TA (2001) The kink-turn: a new RNA secondary structure motif. EMBO J 20:4214–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wimberly BT, Brodersen DE, Clemons WJ Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  CAS  PubMed  Google Scholar 

  7. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5Å resolution. Science 310:827–834

    Article  CAS  PubMed  Google Scholar 

  8. Heppell B, LaFontaine D (2008) Folding of the SAM aptamer is determined by the formation of a K-turn-dependent pseudoknot. Biochemistry 47:1490–1499

    Article  CAS  PubMed  Google Scholar 

  9. Charron C, Manival X, Cléry A, Senty-Ségault V, Charpentier B, Marmier-Gourrier N, Branlant C, Aubry A (2004) The archaeal sRNA binding protein L7Ae has a 3D structure very similar to that of its eukaryal counterpart while having a broader RNA-binding specificity. J Mol Biol 342:757–773

    Article  CAS  PubMed  Google Scholar 

  10. Hamma T, Ferré-D’Amaré AR (2004) Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 Å resolution. Structure 12:893–903

    Article  CAS  PubMed  Google Scholar 

  11. Moore T, Zhang Y, Fenley MO, Li H (2004) Molecular basis of box C/D RNA-protein interactions: cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12:807–818

    Article  CAS  PubMed  Google Scholar 

  12. Vidovic I, Nottrott S, Hartmuth K, Lührmann R, Ficner R (2000) Crystal structure of the spliceosomal 15.5 kD protein bound to a U4 snRNA fragment. Mol Cell 6:1331–1342

    Article  CAS  PubMed  Google Scholar 

  13. Cho I-M, Lai LB, Susanti D, Mukhopadhyay B, Gopalan V (2010) Ribosomal protein L7Ae is a subunit of archaeal RNase P. Proc Natl Acad Sci U S A 107:14573–14578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai SM, Lai LB, Foster MP, Gopalan V (2014) The L7Ae protein binds to two kink-turns in the Pyrococcus furiosus RNase P RNA. Nucleic Acids Res 42:13328–13338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai LB, Tanimoto A, Lai SM, Chen W-Y, Marathe IA, Westhof E, Wysocki VH, Gopalan V (2017) A novel double kink-turn module in euryarchaeal RNase P RNAs. Nucleic Acids Res 45:7432–7440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oshima K, Kakiuchi Y, Tanaka Y, Ueda T, Nakashima T, Kimura M, Yao M (2016) Structural basis for recognition of a kink-turn motif by an archaeal homologue of human RNase P protein Rpp38. Biochem Biophys Res Commun 474:541–546

    Article  CAS  PubMed  Google Scholar 

  17. Goody TA, Melcher SE, Norman DG, Lilley DMJ (2004) The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA 10:254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daldrop P, Lilley DMJ (2013) The plasticity of a structural motif in RNA: structural polymorphism of a kink turn as a function of its environment. RNA 19:357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lilley DMJ (1995) Kinking of DNA and RNA by base bulges. Proc Natl Acad Sci U S A 92:7140–7142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McPhee SA, Huang L, Lilley DMJ (2014) A critical base pair in k-turns that confers folding characteristics and correlates with biological function. Nat Commun 5:5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Lilley DMJ (2007) The role of specific 2′-hydroxyl groups in the stabilization of the folded conformation of kink-turn RNA. RNA 13:200–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue S, Wang R, Yang F, Terns RM, Terns MP, Zhang X, Maxwell ES, Li H (2010) Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Mol Cell 39:939–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moschen T, Wunderlich C, Kreutz C, Tollinger M (2015) NMR resonance assignments of the archaeal ribosomal protein L7Ae in the apo form and bound to a 25 nt RNA. Biomol NMR Assign 9:177–180

    Article  CAS  PubMed  Google Scholar 

  24. Koonin EV, Bork P, Sander C (1994) A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme? Nucleic Acids Res 22:2166–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Watkins NJ, Gottschalk A, Neubauer G, Kastner B, Fabrizio P, Mann M, Lührmann R (1998) Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oruganti SV, Zhang Y, Li H (2005) Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem Biophys Res Commun 333:550–554

    Article  CAS  PubMed  Google Scholar 

  27. Kuhn JF, Tran EJ, Maxwell ES (2002) Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5 kD/Snu13p snoRNP core protein. Nucleic Acids Res 30:931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rozhdestvensky TS, Tang TH, Tchirkova IV, Brosius J, Bachellerie J-P, Hüttenhofer A (2003) Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res 31:869–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samanta MP, Lai SM, Daniels CJ, Gopalan V (2016) Sequence analysis and comparative study of the protein subunits of archaeal RNase P. Biomolecules 6:E22

    Google Scholar 

  30. Wang J, Daldrop P, Huang L, Lilley DMJ (2014) The k-junction motif in RNA structure. Nucleic Acids Res 42:5322–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daldrop P, Masquida B, Lilley DMJ (2013) The functional exchangeability of pk- and k-turns in RNA structure. RNA Biol 10:445–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  33. Tullius TD, Dombroski BA, Churchill MEA, Kam L (1987) Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts. Methods Enzymol 155:537–558

    Article  CAS  PubMed  Google Scholar 

  34. Jain SS, Tullius TD (2008) Footprinting protein-DNA complexes using the hydroxyl radical. Nat Protoc 3:1092–1100

    Article  CAS  PubMed  Google Scholar 

  35. Nilsen TW (2014) Mapping RNA-protein interactions using hydroxyl-radical footprinting. Cold Spring Harb Protoc 2014:1333–1336

    PubMed  Google Scholar 

  36. Ermácora MR, Delfino JM, Cuenoud B, Schepartz A, Fox RO (1992) Conformation-dependent cleavage of staphylococcal nuclease with a disulfide-linked iron chelate. Proc Natl Acad Sci U S A 89:6383–6387

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ermácora MR, Ledman DW, Hellinga HW, Hsu GW, Fox RO (1994) Mapping staphylococcal nuclease conformation using an EDTA-Fe derivative attached to genetically engineered cysteine residues. Biochemistry 33:13625–13641

    Article  PubMed  Google Scholar 

  38. Ermácora MR, Ledman DW, Fox RO (1996) Mapping the structure of a non-native state of staphylococcal nuclease. Nat Struct Biol 3:59–66

    Article  PubMed  Google Scholar 

  39. Tullius TD, Dombroski BA (1986) Hydroxyl radical “footprinting”: high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc Natl Acad Sci U S A 83:5469–5473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ebright YW, Chen Y, Pendergrast PS, Ebright RH (1992) Incorporation of an EDTA-metal complex at a rationally selected site within a protein: application to EDTA-iron DNA affinity cleaving with catabolite gene activator protein (CAP) and Cro. Biochemistry 31:10664–10670

    Article  CAS  PubMed  Google Scholar 

  41. Mazzarelli JM, Ermácora MR, Fox RO, Grindley NDF (1993) Mapping interactions between the catalytic domain of resolvase and its DNA substrate using cysteine-coupled EDTA-iron. Biochemistry 32:2979–2986

    Article  CAS  PubMed  Google Scholar 

  42. Biswas R, Ledman DW, Fox RO, Altman S, Gopalan V (2000) Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe. J Mol Biol 296:19–31

    Article  CAS  PubMed  Google Scholar 

  43. Heilek GM, Marusak R, Meares CF, Noller HF (1995) Directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to ribosomal protein S4. Proc Natl Acad Sci U S A 92:1113–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heilek GM, Noller HF (1996) Directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S13 using tethered Fe(II). RNA 2:597–602

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson KS, Noller HF (1998) Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92:131–139

    Article  CAS  PubMed  Google Scholar 

  46. Heilek GM, Noller HF (1996) Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5. Science 272:1659–1662

    Article  CAS  PubMed  Google Scholar 

  47. Holmberg L, Noller HF (1999) Mapping the ribosomal RNA neighborhood of protein L11 by directed hydroxyl radical probing. J Mol Biol 289:223–233

    Article  CAS  PubMed  Google Scholar 

  48. Rana TM, Meares CF (1991) Transfer of oxygen from an artificial protease to peptide carbon during proteolysis. Proc Natl Acad Sci U S A 88:10578–10582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huq I, Rana TM (1997) Probing the proximity of the core domain of an HIV-1 Tat fragment in a Tat-TAR complex by affinity cleaving. Biochemistry 36:12592–12599

    Article  CAS  PubMed  Google Scholar 

  50. Beck DL, Stump WT, Hall KB (1998) Defining the orientation of the human U1A RBD1 on its UTR by tethered-EDTA(Fe) cleavage. RNA 4:331–339

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gruegelsiepe H, Schön A, Kirsebom LA, Hartmann RK (2005) Enzymatic RNA synthesis using bacteriophage T7 RNA polymerase. In: Hartmann RK, Bindereif A, Schön A, Westhof E (eds) Handbook of RNA Biochemistry, vol 1. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 3–21

    Google Scholar 

  52. Beaucage SL, Reese CB (2009) Recent advances in the chemical synthesis of RNA. Curr Protoc Nucleic Acid Chem 38:2.16.1–2.16.31

    Article  Google Scholar 

  53. Dellinger DJ, Timár Z, Myerson J, Sierzchala AB, Turner J, Ferreira F, Kupihár Z, Dellinger G, Hill KW, Powell JA, Sampson JR, Caruthers MH (2011) Streamlined process for the chemical synthesis of RNA using 2′-O-thionocarbamate-protected nucleoside phosphoramidites in the solid phase. J Am Chem Soc 133:11540–11556

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Fessi T, Schroeder KT, Ouellet J, Liu Y, Freeman ADJ, Lilley DMJ (2012) Single-molecule observation of the induction of k-turn RNA structure on binding L7Ae protein. Biophys J 103:2541–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsai H-Y, Pulukkunat DK, Woznick WK, Gopalan V (2006) Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc Natl Acad Sci U S A 103:16147–16152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller JS, Cornwell DG (1978) The role of cryoprotective agents as hydroxyl radical scavengers. Cryobiology 15:585–588

    Article  CAS  PubMed  Google Scholar 

  57. Scholes G, Willson RL (1967) γ-Radiolysis of aqueous thymine solutions. Determination of relative reaction rates of OH radicals. Trans Faraday Soc 63:2983–2993

    Article  CAS  Google Scholar 

  58. Shen M, Fried MG (2012) Detection of RNA-protein complexes by electrophoretic mobility shift assay. In: Stamm S, Smith C, Lührmann R (eds) Alternative pre-mRNA splicing: theory and protocols. Wiley-Blackwell, Weinheim, Germany, pp 182–198

    Google Scholar 

  59. Rio DC (2012) Filter-binding assay for analysis of RNA-protein interactions. Cold Spring Harb Protoc 2012:1078–1081

    Article  PubMed  Google Scholar 

  60. Yoshimura Y, Matsuzaki Y, Watanabe T, Uchiyama K, Ohsawa K, Imaeda K (1992) Effects of buffer solutions and chelators on the generation of hydroxyl radical and the lipid peroxidation in the Fenton reaction system. J Clin Biochem Nutr 13:147–154

    Article  CAS  Google Scholar 

  61. DeStefano JJ, Buiser RG, Mallaber LM, Fay PJ, Bambara RA (1992) Parameters that influence processive synthesis and site-specific termination by human immunodeficiency virus reverse transcriptase on RNA and DNA templates. Biochim Biophys Acta 1131:270–280

    Article  CAS  PubMed  Google Scholar 

  62. Abbotts J, Bebenek K, Kunkel TA, Wilson SH (1993) Mechanism of HIV-1 reverse transcriptase. Termination of processive synthesis on a natural DNA template is influenced by the sequence of the template-primer stem. J Biol Chem 268:10312–10323

    Article  CAS  PubMed  Google Scholar 

  63. van Houten V, Denkers F, van Dijk M, van den Brekel M, Brakenhoff R (1998) Labeling efficiency of oligonucleotides by T4 polynucleotide kinase depends on 5′-nucleotide. Anal Biochem 265:386–389

    Article  PubMed  Google Scholar 

  64. Hall KB, Fox RO (1999) Directed cleavage of RNA with protein-tethered EDTA-Fe. Methods 18:78–84

    Article  CAS  PubMed  Google Scholar 

  65. Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  66. Harrison GP, Mayo MS, Hunter E, Lever AML (1998) Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5′ and 3′ of the catalytic site. Nucleic Acids Res 26:3433–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y-J, Pan H-Y, Gao S-J (2001) Reverse transcription slippage over the mRNA secondary structure of the LIP1 gene. BioTechniques 31:1286–1294

    Article  CAS  PubMed  Google Scholar 

  68. Sexton AN, Wang PY, Rutenberg-Schoenberg M, Simon MD (2017) Interpreting reverse transcriptase termination and mutation events for greater insight into the chemical probing of RNA. Biochemistry 56:4713–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Lien Lai (The Ohio State University) for her initial efforts toward the development and optimization of the OH-mediated footprinting protocol described herein. We also gratefully acknowledge research support from the Behrman Research Fund (to V.G.) and National Institutes of Health (R01-GM120582 to V.G., Mark P. Foster, Julius B. Lucks, Michael G. Poirier, and Vicki H. Wysocki).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat Gopalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lai, S.M., Gopalan, V. (2021). Using an L7Ae-Tethered, Hydroxyl Radical-Mediated Footprinting Strategy to Identify and Validate Kink-Turns in RNAs. In: Scarborough, R.J., Gatignol, A. (eds) Ribozymes. Methods in Molecular Biology, vol 2167. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0716-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0716-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0715-2

  • Online ISBN: 978-1-0716-0716-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics