Skip to main content

Visualization of Transiently Expressed mRNA in Plants Using MS2

  • Protocol
  • First Online:
RNA Tagging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2166))

Abstract

RNA transport and localization are evolutionarily conserved processes that allow protein translation to occur at specific subcellular sites and thereby having fundamental roles in the determination of cell fates, embryonic patterning, asymmetric cell division, and cell polarity. In addition to localizing RNA molecules to specific subcellular sites, plants have the ability to exchange RNA molecules between cells through plasmodesmata (PD). Plant RNA viruses hijack the mechanisms of intracellular and intercellular RNA transport to establish localized replication centers within infected cells and then to disseminate their infectious genomes between cells and throughout the plant organism with the help of their movement proteins (MP). In this chapter, we describe the transient expression of the tobacco mosaic virus movement protein (TMV-MP) and the application of the MS2 system for the in vivo labeling of the MP-encoding mRNA. The MS2 method is based on the binding of the bacteriophage coat protein (CP) to its origin of assembly (OAS) in the phage RNA. Thus, to label a specific mRNA in vivo, a tandem repetition of a 19-nucleotide-long stem-loop (SL) sequence derived from the MS2 OAS sequence (MSL) is transcriptionally fused to the RNA under investigation. The RNA is detected by the co-expression of fluorescent protein-tagged MS2 CP (MCP), which binds to each of the MSL elements. In providing a detailed protocol for the in vivo visualization of TMV-MP mRNA tagged with the MS2 system in Nicotiana benthamiana epidermal cells, we describe (1) the specific DNA constructs, (2) Agrobacterium tumefaciens-mediated transfection for their transient expression in plants, and (3) imaging conditions required to obtain high-quality mRNA imaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erickson SL, Lykke-Andersen J (2011) Cytoplasmic mRNP granules at a glance. J Cell Sci 124:293–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palacios IM, St Johnston D (2001) Getting the message across: The intracellular localization of mRNAs in higher eukaryotes. Annu Rev Cell Dev Biol 17:569–614

    Article  CAS  PubMed  Google Scholar 

  3. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang ET, Taliaferro JM, Lee JA et al (2016) Dysregulation of mRNA localization and translation in genetic disease. J Neurosci 36:11418–11426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jung H, Gkogkas CG, Sonenberg N, Holt CE (2014) Remote control of gene function by local translation. Cell 157:26–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lécuyer E, Yoshida H, Parthasarathy N et al (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187

    Article  PubMed  CAS  Google Scholar 

  7. Holt CE, Bullock SL (2009) Subcellular mRNA localization in animal cells and why it matters. Science 326:1212–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O (2011) Translation-independent localization of mRNA in E. coli. Science 331:1081–1084

    Article  CAS  PubMed  Google Scholar 

  9. Das S, Singer RH, Yoon YJ (2019) The travels of mRNAs in neurons: do they know where they are going? Curr Opin Neurobiol 57:110–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: Visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16:95–109

    Article  CAS  PubMed  Google Scholar 

  11. Eliscovich C, Buxbaum AR, Katz ZB, Singer RH (2013) mRNA on the move: the road to its biological destiny. J Biol Chem 288:20361–20368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Okita TW, Choi SB (2002) mRNA localization in plants: targeting to the cell’s cortical region and beyond. Curr Opin Plant Biol 5:553–559

    Article  CAS  PubMed  Google Scholar 

  13. Tian L, Chou H-L, Fukuda M et al (2020) mRNA localization in plant cells. Plant Physiol 182:97–109

    Google Scholar 

  14. Chou HL, Tian L, Washida H et al (2019) The rice storage protein mRNAs as a model system for RNA localization in higher plants. Plant Sci 284:203–211

    Article  CAS  PubMed  Google Scholar 

  15. Zambryski P, Crawford K (2000) Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu Rev Cell Dev Biol 16:393–421

    Article  CAS  PubMed  Google Scholar 

  16. Lucas WJ, Lee JY (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726

    Article  CAS  PubMed  Google Scholar 

  17. Thieme CJ, Rojas-Triana M, Stecyk E et al (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 1:1–8

    Google Scholar 

  18. Zhang Z, Zheng Y, Ham B-K et al (2016) Vascular-mediated signalling involved in early phosphate stress response in plants. Nat Plants 2:16033

    Article  CAS  PubMed  Google Scholar 

  19. Yang L, Perrera V, Saplaoura E et al (2019) m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Curr Biol 29:2465–2476

    Article  CAS  PubMed  Google Scholar 

  20. Peña EJ, Heinlein M (2012) RNA transport during TMV cell-to-cell movement. Front Plant Sci 3:1–10

    Article  CAS  Google Scholar 

  21. Heinlein M (2015) Plant virus replication and movement. Virology 479–480:657–671

    Article  PubMed  CAS  Google Scholar 

  22. Heinlein M (2015) Plasmodesmata: channels for viruses on the move. Methods Mol Biol 1217:25–52

    Article  CAS  PubMed  Google Scholar 

  23. Citovsky V (1999) Tobacco mosaic virus: a pioneer of cell-to-cell movement. Philos Trans R Soc Lond Ser B Biol Sci 354:637–643

    Article  CAS  Google Scholar 

  24. Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394

    Article  CAS  PubMed  Google Scholar 

  25. Goelet P, Lomonossoff GP, Butler PJ et al (1982) Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci U S A 79:5818–5822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holt CA, Beachy RN (1991) ln vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181:109–117

    Article  CAS  PubMed  Google Scholar 

  27. Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–647

    Article  CAS  PubMed  Google Scholar 

  28. Oparka KJ, Prior DAM, Santa Cruz S et al (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J 12:781–789

    Article  CAS  PubMed  Google Scholar 

  29. Niehl A, Amari K, Gereige D et al (2012) Control of tobacco mosaic virus movement protein fate by cell-division-cycle protein48. Plant Physiol 160:2093–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reichel C, Beachy RN (2000) Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J Virol 74:3330–3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985

    Article  CAS  PubMed  Google Scholar 

  32. Heinlein M, Padgett HS, Gens JS et al (1998) Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boyko V, Ferralli J, Ashby J et al (2000) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2:826–832

    Article  CAS  PubMed  Google Scholar 

  34. Boyko V, Hu Q, Seemanpillai M et al (2007) Validation of microtubule-associated tobacco mosaic virus RNA movement and involvement of microtubule-aligned particle trafficking. Plant J 51:589–603

    Article  CAS  PubMed  Google Scholar 

  35. Sambade A, Brandner K, Hofmann C et al (2008) Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9:2073–2088

    Article  CAS  PubMed  Google Scholar 

  36. Peña EJ, Heinlein M (2013) Cortical microtubule-associated ER sites: organization centers of cell polarity and communication. Curr Opin Plant Biol 16:764–773

    Article  PubMed  CAS  Google Scholar 

  37. Boyko V, Ashby JA, Suslova E et al (2002) Intramolecular complementing mutations in tobacco mosaic virus movement protein confirm a role for microtubule association in viral RNA transport. J Virol 76:3974–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boyko V, Ferralli J, Heinlein M (2000) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J 22:315–325

    Article  CAS  PubMed  Google Scholar 

  39. Amari K, Di Donato M, Dolja VV, Heinlein M (2014) Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog 10:e1004448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hofmann C, Niehl A, Sambade A et al (2009) Inhibition of tobacco mosaic virus movement by expression of an actin-binding protein. Plant Physiol 149:1810–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pitzalis N, Heinlein M (2017) The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. J Exp Bot 69:117–132

    Article  CAS  PubMed  Google Scholar 

  42. Shashkova S, Leake MC (2017) Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 37:BSR20170031

    Google Scholar 

  43. Christensen N, Tilsner J, Bell K et al (2009) The 5’cap of tobacco mosaic virus (TMV) is required for virion attachment to the actin/endoplasmic reticulum network during early infection. Traffic 10:536–551

    Article  CAS  PubMed  Google Scholar 

  44. Sokol DL, Zhang X, Lu P, Gewirtz AM (1998) Real time detection of DNA·RNA hybridization in living cells. Proc Natl Acad Sci U S A 95:11538–11543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheong C-G, Hall TMT (2006) Engineering RNA sequence specificity of Pumilio repeats. Proc Natl Acad Sci 103:13635–13639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adamala KP, Martin-Alarcon DA, Boyden ES (2016) Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A 113:2579–2588

    Article  CAS  Google Scholar 

  47. Nelles DA, Fang MY, O’Connell MR et al (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Babendure JR, Adams SR, Tsien RY (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125:14716–14717

    Article  CAS  PubMed  Google Scholar 

  50. Bertrand E, Chartrand P, Schaefer M et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    Article  CAS  PubMed  Google Scholar 

  51. Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ (2014) RNA imaging in living cells - methods and applications. RNA Biol 11:1083–1095

    Article  PubMed  PubMed Central  Google Scholar 

  52. George L, Indig FE, Abdelmohsen K, Gorospe M (2018) Intracellular RNA-tracking methods. Open Biol 8:180104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. van Gijtenbeek LA, Kok J (2017) Illuminating messengers: an update and outlook on RNA visualization in bacteria. Front Microbiol 8:1161

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tilsner J (2015) Techniques for RNA in vivo imaging in plants. J Microsc 258:1–5

    Article  CAS  PubMed  Google Scholar 

  55. Tutucci E, Livingston NM, Singer RH, Wu B (2018) Imaging mRNA in vivo, from birth to death. Annu Rev Biophys 47:85–106

    Article  CAS  PubMed  Google Scholar 

  56. Hamada S, Ishiyama K, Choi S-B et al (2003) The transport of prolamine RNAs to prolamine protein bodies in living rice endosperm cells. Plant Cell 15:2253–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo K-R, Huang N-C, Yu T-S (2018) Selective targeting of mobile mRNAs to plasmodesmata for cell-to-cell movement. Plant Physiol 177:604–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fusco D, Accornero N, Lavoie B et al (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13:161–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heinrich S, Sidler CL, Azzalin CM, Weis K (2017) Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing. RNA 23:134–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garcia JF, Parker R (2015) MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA 21:1393–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tutucci E, Vera M, Biswas J et al (2018) An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15:81–89

    Article  CAS  PubMed  Google Scholar 

  62. Vera M, Tutucci E, Singer RH (2019) Imaging single mRNA molecules in mammalian cells using an optimized MS2-MCP system. Methods Mol Biol 2038:3–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tutucci E, Vera M, Singer RH (2018) Single-mRNA detection in living S. cerevisiae using a re-engineered MS2 system. Nat Protoc 13:2268–2296

    Article  CAS  PubMed  Google Scholar 

  64. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  CAS  PubMed  Google Scholar 

  66. Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  67. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  68. Peña EJ, Heinlein M (2016) In vivo RNA visualization in plants using MS2 tagging. Methods Enzymol 572:105–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence National de la Recherche (grant ANR-08-BLAN-244 to MH), the Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET, grant PIP-0847 to EP), and by a binational CNRS-CONICET grant (PICS-2014 to MH and EP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Heinlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peña, E.J., Heinlein, M. (2020). Visualization of Transiently Expressed mRNA in Plants Using MS2. In: Heinlein, M. (eds) RNA Tagging. Methods in Molecular Biology, vol 2166. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0712-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0712-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0711-4

  • Online ISBN: 978-1-0716-0712-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics