Skip to main content

Correlative Ultrastructural Analysis of Functionally Modulated Synapses Using Automated Tape-Collecting Ultramicrotome and SEM Array Tomography

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 155))

Abstract

Live imaging of dendritic spines using advanced light microscopy (LM) provides insight into how the brain processes information to learn and form memories. As a complementary approach, electron microscopy (EM) offers a complete view of the ultrastructural characteristics of synapses, such as the size of postsynaptic density, as well as the distribution and number of synaptic vesicles in the presynaptic terminal. By bridging these two different visualization platforms, function and ultrastructure can be directly linked at the level of individual synapses. The technical challenge is how to examine the same spines in reliable and reproducible ways using two imaging modalities with completely different spatial scales. Here, we describe our detailed workflow to combine light and electron microscopy for efficient correlative analysis of spines of interest. As an example, we show how to find a dendritic spine that is stimulated with 2-photon glutamate uncaging on a CA1 pyramidal neuron expressing green fluorescent protein (GFP) in organotypic hippocampal slices. Following fluorescence observation under a 2-photon fluorescence microscope, the tissue is processed for EM using pre-embedding immunogold-labeling of GFP to locate the cell of interest. It is then sectioned with the Automated Tape Collecting Ultramicrotome (ATUMtome) to reliably and quickly collect hundreds of serial sections from a large block face (up to 3 × 3 mm). Then using a scanning electron microscope (SEM) in combination with array tomography software (Atlas 5 AT), we semiautomatically collect images at multiple resolutions. The obtained volumetric dataset is reconstructed and analyzed in a 3D manner. This workflow allows us to collect data for quantitative analysis faster than conventional serial sectioning followed by transmission electron microscopy (TEM) imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353. https://doi.org/10.1146/annurev.physiol.64.081501.160008

    Article  CAS  PubMed  Google Scholar 

  2. Burns ME, Augustine GJ (1995) Synaptic structure and function: dynamic organization yields architectural precision. Cell 83(2):187–194

    Article  CAS  PubMed  Google Scholar 

  3. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711. https://doi.org/10.1146/annurev.neuro.23.1.649

    Article  CAS  PubMed  Google Scholar 

  4. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092. https://doi.org/10.1038/nn736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300. https://doi.org/10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dani A, Huang B, Bergan J, Dulac C, Zhuang X (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68(5):843–856. https://doi.org/10.1016/j.neuron.2010.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. MacGillavry HD, Song Y, Raghavachari S, Blanpied TA (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78(4):615–622. https://doi.org/10.1016/j.neuron.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105(48):18982–18987. https://doi.org/10.1073/pnas.0810028105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12(7):2685–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fifkova E, Anderson CL (1981) Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp Neurol 74(2):621–627

    Article  CAS  PubMed  Google Scholar 

  11. Bosch M, Hayashi Y (2012) Structural plasticity of dendritic spines. Curr Opin Neurobiol 22(3):383–388. https://doi.org/10.1016/j.conb.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  12. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33(3):121–129. https://doi.org/10.1016/j.tins.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  13. Nishiyama J, Yasuda R (2015) Biochemical computation for spine structural plasticity. Neuron 87(1):63–75. https://doi.org/10.1016/j.neuron.2015.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM, Kasai H (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525(7569):333–338. https://doi.org/10.1038/nature15257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766. https://doi.org/10.1038/nature02617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44(5):759–767. https://doi.org/10.1016/j.neuron.2004.11.016

    Article  PubMed  Google Scholar 

  17. Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44(5):749–757. https://doi.org/10.1016/j.neuron.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  18. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917):788–794. https://doi.org/10.1038/nature01273

    Article  CAS  PubMed  Google Scholar 

  19. Harris KM (1999) Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol 9(3):343–348

    Article  CAS  PubMed  Google Scholar 

  20. Modla S, Czymmek KJ (2011) Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 42(8):773–792. https://doi.org/10.1016/j.micron.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  21. Knott GW, Holtmaat A, Trachtenberg JT, Svoboda K, Welker E (2009) A protocol for preparing GFP-labeled neurons previously imaged in vivo and in slice preparations for light and electron microscopic analysis. Nat Protoc 4(8):1145–1156. https://doi.org/10.1038/nprot.2009.114

    Article  CAS  PubMed  Google Scholar 

  22. Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2(11):857–862. https://doi.org/10.1038/nmeth806

    Article  CAS  PubMed  Google Scholar 

  23. Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 217(4563):953–955

    Article  CAS  PubMed  Google Scholar 

  24. Perkovic M, Kunz M, Endesfelder U, Bunse S, Wigge C, Yu Z, Hodirnau VV, Scheffer MP, Seybert A, Malkusch S, Schuman EM, Heilemann M, Frangakis AS (2014) Correlative light- and electron microscopy with chemical tags. J Struct Biol 186(2):205–213. https://doi.org/10.1016/j.jsb.2014.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30(11):1143–1148. https://doi.org/10.1038/nbt.2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Butko MT, Yang J, Geng Y, Kim HJ, Jeon NL, Shu X, Mackey MR, Ellisman MH, Tsien RY, Lin MZ (2012) Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy. Nat Neurosci 15(12):1742–1751. https://doi.org/10.1038/nn.3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9(4):e1001041. https://doi.org/10.1371/journal.pbio.1001041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bishop D, Nikic I, Brinkoetter M, Knecht S, Potz S, Kerschensteiner M, Misgeld T (2011) Near-infrared branding efficiently correlates light and electron microscopy. Nat Methods 8(7):568–570. https://doi.org/10.1038/nmeth.1622

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka J, Matsuzaki M, Tarusawa E, Momiyama A, Molnar E, Kasai H, Shigemoto R (2005) Number and density of AMPA receptors in single synapses in immature cerebellum. J Neurosci 25(4):799–807. https://doi.org/10.1523/JNEUROSCI.4256-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82(2):444–459. https://doi.org/10.1016/j.neuron.2014.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maco B, Holtmaat A, Cantoni M, Kreshuk A, Straehle CN, Hamprecht FA, Knott GW (2013) Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons. PLoS One 8(2):e57405. https://doi.org/10.1371/journal.pone.0057405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schalek R, Kasthuri N, Hayworth K, Berger D, Tapia J, Morgan J, Turaga S, Fagerholm E, Seung H, Lichtman J (2011) Development of high-throughput, high-resolution 3D reconstruction of large-volume biological tissue using automated tape collection ultramicrotomy and scanning electron microscopy. Microsc Microanal 17(S2):966–967. https://doi.org/10.1017/s1431927611005708

    Article  Google Scholar 

  33. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2(11):e329. https://doi.org/10.1371/journal.pbio.0020329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28(12):2959–2964. https://doi.org/10.1523/JNEUROSCI.3189-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55(1):25–36. https://doi.org/10.1016/j.neuron.2007.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Horstmann H, Korber C, Satzler K, Aydin D, Kuner T (2012) Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One 7(4):e35172. https://doi.org/10.1371/journal.pone.0035172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuwajima M, Mendenhall JM, Harris KM (2013) Large-volume reconstruction of brain tissue from high-resolution serial section images acquired by SEM-based scanning transmission electron microscopy. Methods Mol Biol 950:253–273. https://doi.org/10.1007/978-1-62703-137-0_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Titze B, Genoud C (2016) Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell 108(11):307–323. https://doi.org/10.1111/boc.201600024

    Article  CAS  PubMed  Google Scholar 

  39. Kamasawa N, Sun Y, Mikuni T, Guerrero-Given D, Yasuda R (2015) Correlative ultrastructural analysis of functionally modulated synapses using automatic tape-collecting ultramicrotome – SEM array tomography. Microsc Microanal 21(S3):1271–1272. https://doi.org/10.1017/s143192761500714x

    Article  Google Scholar 

  40. Humpel C (2015) Organotypic brain slice cultures: a review. Neuroscience 305:86–98. https://doi.org/10.1016/j.neuroscience.2015.07.086

    Article  CAS  PubMed  Google Scholar 

  41. Collin C, Miyaguchi K, Segal M (1997) Dendritic spine density and LTP induction in cultured hippocampal slices. J Neurophysiol 77(3):1614–1623

    Article  CAS  PubMed  Google Scholar 

  42. Washbourne P, McAllister AK (2002) Techniques for gene transfer into neurons. Curr Opin Neurobiol 12(5):566–573

    Article  CAS  PubMed  Google Scholar 

  43. Murphy RC, Messer A (2001) Gene transfer methods for CNS organotypic cultures: a comparison of three nonviral methods. Mol Ther 3(1):113–121. https://doi.org/10.1006/mthe.2000.0235

    Article  CAS  PubMed  Google Scholar 

  44. Fortin DA, Davare MA, Srivastava T, Brady JD, Nygaard S, Derkach VA, Soderling TR (2010) Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-permeable AMPA receptors recruited by CaM-kinase I. J Neurosci 30(35):11565–11575. https://doi.org/10.1523/JNEUROSCI.1746-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lang C, Barco A, Zablow L, Kandel ER, Siegelbaum SA, Zakharenko SS (2004) Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Natl Acad Sci U S A 101(47):16665–16670. https://doi.org/10.1073/pnas.0407581101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, Jones T, Zuo Y (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462(7275):915–919. https://doi.org/10.1038/nature08389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61(11):1029–1042. https://doi.org/10.1002/iub.256

    Article  CAS  PubMed  Google Scholar 

  48. Jaisser F (2000) Inducible gene expression and gene modification in transgenic mice. J Am Soc Nephrol 11(Suppl 16):S95–S100

    CAS  PubMed  Google Scholar 

  49. Mikuni T, Nishiyama J, Sun Y, Kamasawa N, Yasuda R (2016) High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell 165(7):1803–1817. https://doi.org/10.1016/j.cell.2016.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nunez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149. https://doi.org/10.1038/nature20565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patterson MA, Szatmari EM, Yasuda R (2010) AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc Natl Acad Sci U S A 107(36):15951–15956. https://doi.org/10.1073/pnas.0913875107

    Article  PubMed  PubMed Central  Google Scholar 

  52. Woods G, Zito K (2008) Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J Vis Exp 12. https://doi.org/10.3791/675

  53. Malinow R, Hayashi Y, Maletic-Savatic M, Zaman SH, Poncer JC, Shi SH, Esteban JA, Osten P, Seidenman K (2010) Introduction of green fluorescent protein (GFP) into hippocampal neurons through viral infection. Cold Spring Harb Protoc 4:pdb prot5406. https://doi.org/10.1101/pdb.prot5406

    Article  Google Scholar 

  54. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51

    Article  CAS  PubMed  Google Scholar 

  55. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872

    Article  CAS  PubMed  Google Scholar 

  56. Gogolla N, Galimberti I, DePaola V, Caroni P (2006) Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nat Protoc 1(3):1165–1171. https://doi.org/10.1038/nprot.2006.168

    Article  CAS  PubMed  Google Scholar 

  57. Kwon HB, Sabatini BL (2011) Glutamate induces de novo growth of functional spines in developing cortex. Nature 474(7349):100–104. https://doi.org/10.1038/nature09986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E (2016) Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol 14(1):e1002340. https://doi.org/10.1371/journal.pbio.1002340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank RMC Boeckeler and Carl Zeiss Microscopy for their support during startup and to keep the equipment up and running to establish the workflow. This work was supported by funding from Max Planck Society and a grant from Florida Atlantic University Pilot Graduate Research and Inquiry Program (GRIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Kamasawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, Y., Thomas, C., Mikuni, T., Guerrero-Given, D., Yasuda, R., Kamasawa, N. (2020). Correlative Ultrastructural Analysis of Functionally Modulated Synapses Using Automated Tape-Collecting Ultramicrotome and SEM Array Tomography. In: Wacker, I., Hummel, E., Burgold, S., Schröder, R. (eds) Volume Microscopy . Neuromethods, vol 155. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0691-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0691-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0690-2

  • Online ISBN: 978-1-0716-0691-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics